MULTISLICE COMPUTED TOMOGRAPHY IN THE DIAGNOSIS OF MIXED TRAUMATIC BRAIN INJURY
https://doi.org/10.20862/0042-4676-2018-99-3-119-124
Abstract
Objective: to study changes in the cross sectional optic nerve diameter (OND), by using multislice computed tomography (MSCT), in patients with mild traumatic brain injury (TBI), as well as those with severe (including mixed) TBI before and after craniotomy; to assess whether this technique can be integrated with a whole-body MSCT protocol in severe mixed TBI (MTBI).
Material and methods. OND was retrospectively studied in two selected groups of patients with injuries (a total of 51 patients): Group 1 (n = 40) included 2 subgroups (n = 20 in each) with mild TBI or severe MTBI; Group 2 (n = 11) comprised 2 subgroups with severe TBI who had undergone decompressive (n = 6) or osteoplastic (n = 5) craniotomy with subsequent OND measurement after 12–18 hours.
Results. Primary brain MSCT showed that the average OND was 6.12±1,01 mm in severe MTBI and 4.4±0.19 mm in mild TBI (Student’s t = 5.707). After decompressive craniotomy, there was a decrease in OND from 6.26±0.27 to 5.38±0.22 mm (Student’s t = 2.486).
Conclusion. Among the patients with severe MTBI, the OND at primary MSCT is significantly greater than that in patients with mild TBI, which may be due to elevated intracranial pressure, as shown by the literature data. There is a statistically significant decrease in OND after decompressive craniotomy and removal of the brain compressive factor. Whole-body MSCT revealed no technical obstacles to the application of an OND measurement technique.
About the Authors
A. V. SemenovRussian Federation
mikrorayon Yubileynyy, 100, Irkutsk, 664049, Russian Federation
ul. Timiryazeva, 31, Irkutsk, 664007, Russian Federation
Cand. Med. Sc., Associate Professor of Traumatology, Orthopedic Surgery and Neurosurgery Chair, Head of Neurosurgical Department
N. V. Monakov
Russian Federation
ul. Timiryazeva, 31, Irkutsk, 664007, Russian Federation
Radiologist
E. I. Balkhanova
Russian Federation
ul. Timiryazeva, 31, Irkutsk, 664007, Russian Federation
Neurosurgeon
A. A. Raznobarskiy
Russian Federation
ul. Timiryazeva, 31, Irkutsk, 664007, Russian Federation
Head of Department of Radiation Diagnostics
T. A. Mamonova
Russian Federation
ul. Timiryazeva, 31, Irkutsk, 664007, Russian Federation
Head of Neurological Department
References
1. Семенов А.В., Сороковиков В.А. Неинвазивное измерение внутричерепного давления в клинической практике (обзор литературы). Бюллетень Восточно- Сибирского научного центра Сибирского отделения Российской академии медицинских наук. 2015; 3: 100–4. [Semenov A.V., Sorokovikov V.A. Non-invasive detection of intracranial pressure in clinical practice (review of literature). Byulleten’ Vostochno- Sibirskogo Nauchnogo Tsentra SO RAMN (Bulletin of the East-Siberian Scientific Center of the Siberian branch of the Russian Academy of Medical Sciences, Russian journal). 2015; 3: 100–4 (in Russ.).]
2. Hansen H., Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg. Radiol. Anat. 1996; 17: 323–8.
3. Legrand A., Jeanjean P., Delanghe F., Peltier J., Lecat B., Dupont H. Estimation of optic nerve sheath on an initial brain computed tomography scan can contribute prognostic information in traumatic brain injury patients. Crit. Care. 2013; 17 (2): R61. DOI: 10.1186/cc12589
4. Marshall L.F., Marshall S.B., Klauber M.R., Clark M.B., Eisenberg H.M., Jane J.A. et al. A new classification of head injury based on computerized tomography. J. Neurosurg. 1991; 75: s28–s35.
5. Geeraerts T., Launey Y., Martin L., Pottecher J., Vigué B., Duranteau J., Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007; 17:1704–11. DOI: 10.1007/s00134-007-0797-6
6. Geeraerts T., Newcombe V.F.J., Coles J.P., Abate M.G., Perkes I.E., Hutchinson P.J.A. et al. Use of T2- weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit. Care. 2008; 17: R114.
7. Geeraerts T., Duranteau J., Benhamou D. Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit. Care. 2008; 17: 150. DOI: 10.1186/cc6893
8. Hansen H.C., Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J. Neurosurg. 1997; 17: 34–40. DOI: 10.3171/jns.1997.87.1.0034
9. Watanabe A., Kinouchi H., Horikoshi T., Uchida M., Ishigame K. Effect of intracranial pressure on the diameter of the optic nerve sheath. J. Neurosurg. 2008; 17: 255–8. DOI: 10.3171/JNS/2008/109/8/0255
10. Cammarata G., Ristagno G., Cammarata A., Mannanici G., Denaro C., Gullo A. Ocular ultrasound to detect intracranial hypertension in trauma patients. J. Trauma. 2011; 17: 779– 81. DOI: 10.1097/TA.0b013e3182220673
11. Rajajee V., Fletcher J.J., Rochlen L.R., Jacobs T.L. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: post-hoc analysis of data from a prospective, blinded single center study. Crit. Care. 2012; 17: R79. DOI: 10.1186/CC11336
12. Libing J., Yuefeng M., Shouyin J., Ligang Y., Zhongjun Z., Yongan X., Mao Z. Comparison of whole-body computed tomography vs selective radiological imaging on outcomes in major trauma patients: a metaanalysis. Scand. J. Trauma Resusc. Emerg. Med. 2014; 22: 54. DOI: 10.1186/s13049-014-0054-2
13. Hutter M., Woltmann A., Hierholzer C., Gärtner C., Bühren V., Stengel D. Association between a single-pass whole-body computed tomography policy and survival after blunt major trauma: a retrospective cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2011; 19: 73. DOI: 10.1186/1757-7241-19-73
14. Löw R., Düber C., Schweden F., Lehmann L., Blum J., Thelen M. Whole body spiral CT in primary diagnosis of patients with multiple trauma in emergency situations. Rofo. 1997; 166 (5): 382–8.
15. Kanz K., Paul A., Lefering R., Kay M., Kreimeier U., Linsenmaier U. et al. The Trauma Registry of the German Trauma Society. J. Trauma. Manag. Outcomes. 2010; 4: 4. DOI: 10.1186/1752-2897-4-4
16. Семенов А.В. Классификация сочетанной черепно-мозговой травмы: вопросы терминологии. Нейрохирургия. 2015; 4: 60–3. [Semenov A.V. The classification of combined head unjury: terminology questions. Neyrokhirurgiya (Neurosurgery, Russian journal). 2015; 4: 60–3 (in Russ.).]
17. Каплан А.В., Пожариский В.Ф., Лирцман В.М. Множественные и сочетанные травмы опорно-двигательного аппарата. Основные проблемы. Труды 3-го Всесоюзного съезда травматологов-ортопедов. М.; 1976: 29–37. [Kaplan A.V., Pozhariskiy V.F., Lirtsman V.M. Multiple and combined trauma of the locomotor apparatus. Basic problems. In: Transactions of 3-th all-USSR traumatologists and orthopedists congress. Moscow; 1976; 29–37 (in Russ.).]
18. Stengel D., Ottersbach C., Matthes G., Weigeldt M., Grundei S., Rademacher G. et al. Accuracy of single-pass whole-body computed tomography for detection or injuries in patients with major blunt trauma. CMAJ. 2012; 184 (8): 869–76. DOI: 10.1503/cmaj.111420
19. Gordic S., Alkadhi H., Hodel S., Simmen H.-P., Brueesch M., Frauenfelder T. et al. Whole- body CT-based imaging algorithm for multiple trauma patients: radiation dose and time to diagnosis. Br. J. Radiol. 2015; 88 (1047): 20140616. DOI: 10.1259/bjr.20140616
20. Topp T., Lefering R., Lopez C., Ruchholtz S., Ertel W., Kühne C. Radiologic diagnostic procedures in severely injured patients – is only whole-body multislice computed tomography the answer? Int. J. Emerg. Med. 2015; 8: 3. DOI: 10.1186/s12245-015-0053-8
Review
For citations:
Semenov A.V., Monakov N.V., Balkhanova E.I., Raznobarskiy A.A., Mamonova T.A. MULTISLICE COMPUTED TOMOGRAPHY IN THE DIAGNOSIS OF MIXED TRAUMATIC BRAIN INJURY. Journal of radiology and nuclear medicine. 2018;99(3):119-124. (In Russ.) https://doi.org/10.20862/0042-4676-2018-99-3-119-124