Digital Breast Tomosynthesis as a Tool to Reduce False-Positive Mammography Results: a Comparative Analysis of Diagnostic Accuracy
https://doi.org/10.20862/0042-4676-2025-106-1-3-17-26
Abstract
Background. The growing interest in digital breast tomosynthesis (DBT) is due to its ability to significantly reduce the false-positive rate of mammography due to layer-by-layer imaging, which provides a more detailed analysis of tissue structural features. Objective: to evaluate the effectiveness of DBT in reducing the rate of false-positive mammography results. Material and methods. The data of 82 patients with BI-RADS category 4 on 2D mammography who underwent DBT using Fujifilm FDR MS-3500 device (high resolution mode, slice thickness 1 mm) were retrospectively analyzed. If the detected changes were classified as BI-RADS 4–5 by DBT, a stereotactic biopsy with histological verification was performed. An analysis of the consistency between DBT and mammography in the classification of pathological changes in the BI-RADS category was carried out, as well as an assessment of the positive prognostic value of 2D mammography and DBT. Results. DBT reclassified BI-RADS 4 determined by mammography results to BI-RADS 2 in 59% of cases and to BI-RADS 3 in 8.5% of cases. The positive prognostic value for mammography was 17.1%, for DBT it was 53.8%. In patients with radiologically dense mammary glands (ACR C, D), in 66.7% of cases, BI-RADS 4 were reclassified into BI-RADS 2–3. Conclusion. DBT was proven to be superior to standard mammography in accurately classifying masses according to BI-RADS categories, including in patients with high breast density, providing detailed visualization of the architectonics of pathologies and reducing the incidence of false positives.
About the Authors
A. T. FatkhutdinovaRussian Federation
Aida T. Fatkhutdinova, Cand. Med. Sc., Associate Professor, Chair of Oncology, Radiation Diagnostics and Radiation Therapy; Radiologist
ul. Butlerova, 49, Kazan, 420012
Sibirsky trakt, 29, Kazan, 420029
A. F. Yusupova
Russian Federation
Alsu F. Yusupova, Cand. Med. Sc., Associate Professor, Chair of Oncology, Radiation Diagnostics and Radiation Therapy
ul. Butlerova, 49, Kazan, 420012
K. Sh. Khairtdinova
Russian Federation
Kamilya Sh. Khairtdinova, Resident, Chair of Oncology, Radiation Diagnostics and Radiation Therapy
ul. Butlerova, 49, Kazan, 420012
References
1. Sardanelli F, Aase HS, Álvarez M, et al. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. Eur Radiol. 2017; 27(7): 2737–43. https://doi.org/10.1007/s00330-016-4612-z.
2. Айнакулова А.С., Кайдарова Д.Р., Жолдыбай Ж.Ж. и др. Возможности современных лучевых методов дополнительной визуализации молочных желез в скрининге рака молочной железы: обзор литературы. Сибирский онкологический журнал. 2021; 20(4): 99–107. https://doi.org/10.21294/1814-4861-2021-20-4-99-107. [Ainakulova AS, Kaidarova DR, Zholdybai ZhZh, et al. Role of modern imaging techniques in additional vizualisation of breast cancer: literature review. Siberian Journal of Oncology. 2021; 20(4): 99–107 (in Russ). https://doi.org/10.21294/1814-4861-2021-20-4-99-107.]
3. Weigel S, Heindel W, Heidrich J, et al. Digital mammography screening: sensitivity of the programme dependent on breast density. Eur Radiol. 2017; 27(7): 2744–51. https://doi.org/10.1007/s00330-016-4636-4.
4. Гринберг М.В., Харченко Н.В., Кунда М.А. и др. Дигитальный томосинтез – новая технология в диагностике непальпируемого рака молочной железы. Вестник Российского университета дружбы народов. Серия: Медицина. 2015; 3: 46–60. [Grinberg MV, Harchenko NV, Kunda MA, et al. Digital tomosynthesis in diagnosis of inpalpable breast cancer. RUDN Journal of Medicine. 2015; 3: 46–60 (in Russ).]
5. Гажонова В.Е., Ефремова М.П., Дорохова Е.А. Современные методы неинвазивной лучевой диагностики рака молочной железы. Русский медицинский журнал. Мать и дитя. 2016; 24(5): 321–4. [Gazhonova VE, Efremova MP, Dorokhova EA. Modern methods of non-invasive radiation diagnostics of breast cancer. Russian Journal of Woman and Child Health. 2016; 24(5): 321–4 (in Russ).]
6. Monticciolo DL. Digital breast tomosynthesis: a decade of practice in review. J Am Coll Radiol. 2023; 20(2): 127–33. https://doi.org/10.1016/j.jacr.2022.08.005.
7. Ha AS, Lee AY, Hippe DS, et al. Digital tomosynthesis to evaluate fracture healing: prospective comparison with radiography and CT. AJR Am J Roentgenol. 2015; 205(1): 136–41. https://doi.org/10.2214/AJR.14.13833.
8. Gennaro G, Bernardi D, Houssami N. Radiation dose with digital breast tomosynthesis compared to digital mammography: perview analysis. Eur Radiol. 2018; 28(2): 573–81. https://doi.org/10.1007/s00330-017-5024-4.
9. Солодкий В.А., Рожкова Н.И., Мазо М.Л. Первый опыт томосинтеза для повышения диагностической эффективности заболеваний молочной железы. Лечащий врач. 2012; 11: 25. [Solodkiy VA, Rozhkova NI, Mazo ML. The first experience of tomosynthesis to improve the diagnostic efficiency of breast diseases. Lechaschi vrach. 2012; 11: 25 (in Russ).]
10. Рожкова Н.И., Решетцова Г.В., Запирова С.Б. О возможностях маммографического цифрового томосинтеза. Радиология – практика. 2008; 6: 19–23. [Rozhkova NI, Reshetzova GV, Zapirova SB. On the possibilities of mammographic digital tomosynthesis. Radiology and Practice. 2008; 6: 19–23 (in Russ).]
11. Сулейменова Д., Айнакулова А.С., Жолдыбай Ж.Ж. Цифровой томосинтез молочных желез: физические основы метода. Вестник Казахского национального медицинского университета. 2020; 1: 15–9. [Suleimenova D, Zholdybay ZhZh, Ainakulova AS. Digital breast tomosynthesis: physical bases of the method. Vestnik KazNMU. 2020; 1: 15–9 (in Russ).]
12. Sechopoulos I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med Phys. 2013; 40(1): 014302. https://doi.org/10.1118/1.4770281.
13. Iranmakani S, Mortezazadeh T, Sajadian F, et al. A review of various modalities in breast imaging: technical aspects and clinical outcomes. Egypt J Radiol Nucl Med. 2020; 51: 57. https://doi.org/10.1186/s43055-020-00175-5.
14. Микушин С.Ю., Рожкова Н.И., Гришкевич В.И. и др. Оценка диагностической эффективности рентгенологического томосинтеза при заболеваниях молочной железы. Российский электронный журнал лучевой диагностики. 2019; 9(3): 86– 92. https://doi.org/10.21569/2222-7415-2019-9-3-86-92. [Mikushin SYu, Rozhkova NI, Grishkevich VI, et al. Assessment of diagnostic efficiency of digital breast tomosynthesis in diagnostics of breast diseases. Russian Electronic Journal of Radiology. 2019; 9(3): 86–92 (in Russ). https://doi.org/10.21569/2222-7415-2019-9-3-86-92.]
15. Phi XA, Tagliafico A, Houssami N, et al. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts – a systematic review and metaanalysis. BMC Cancer. 2018; 18(1): 380. https://doi.org/10.1186/s12885-018-4263-3.
16. Destounis S. Role of digital breast tomosynthesis in screening and diagnostic breast imaging. Semin Ultrasound CT MR. 2018; 39(1): 35–44. https://doi.org/10.1053/j.sult.2017.08.002.
17. Friedewald SM, Rafferty EA, Rose SL, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014; 311(24): 2499–507. https://doi.org/10.1001/jama.2014.6095.
18. Rosenqvist S, Brännmark J, Dustler M. Digital breast tomosynthesis in breast cancer screening: an ethical perspective. Insights Imaging. 2024; 15: 213. https://doi.org/10.1186/s13244-024-01790-w.
19. Marinovich ML, Hunter KE, Macaskill P, Houssami N. Breast cancer screening using tomosynthesis or mammography: a meta-analysis of cancer detection and recall. J Natl Cancer Inst. 2018; 110(9): 942–9. https://doi.org/10.1093/jnci/djy121.
20. Алиева Г.С., Корженкова Г.П., Колядина И.В. Комплексная лучевая диагностика раннего рака молочной железы (обзор литературы). Современная онкология. 2019; 21(3): 26–32. https://doi.org/10.26442/18151434.2019.3.190469. [Aliyeva GS, Korzhenkova GP, Kolyadina IV. Complex radiologic imaging of early breast cancer (literature review). Journal of Modern Oncology. 2019; 21(3): 26–32 (in Russ). https://doi.org/10.26442/18151434.2019.3.190469.]
21. Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013; 267(1): 47–56. https://doi.org/10.1148/radiol.12121373.
22. Wang J, Phi XA, Greuter MJW, et al. The cost-effectiveness of digital breast tomosynthesis in a population breast cancer screening program. Eur Radiol. 2020; 30(10): 5437–45. https://doi.org/10.1007/s00330-020-06812-x.
23. Partridge GJW, Darker I, James JJ, et al. How long does it take to read a mammogram? Investigating the reading time of digital breast tomosynthesis and digital mammography. Eur J Radiol. 2024; 177: 111535. https://doi.org/10.1016/j.ejrad.2024.111535.
24. Ali RMKM, England A, Tootell AK, Hogg P. Radiation dose from digital breast tomosynthesis screening – a comparison with full field digital mammography. J Med Imaging Radiat Sci. 2020; 51(4): 599–603. https://doi.org/10.1016/j.jmir.2020.08.018.
25. Naeim RM, Marouf RA, Nasr ME, Abd El-Rahman MA. Comparing the diagnostic efficacy of digital breast tomosynthesis with full-field digital mammography using BI-RADS scoring. Egypt J Radiol Nucl Med. 2021; 52: 44. https://doi.org/10.1186/s43055-021-00421-4.
26. Zuley ML, Bandos AI, Ganott MA, et al. Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions. Radiology. 2013; 266(1): 89–95. https://doi.org/10.1148/radiol.12120552.
27. Berg WA, Berg JM, Sickles EA, et al. Cancer yield and patterns of follow-up for BI-RADS category 3 after screening mammography recall in the National Mammography Database. Radiology. 2020; 296(1): 32–41. https://doi.org/10.1148/radiol.2020192641.
28. Elmi A, Rakow-Penner R, Chong A, et al. Calcifications on DBT and synthetic views: update and management strategies. Curr Radiol Rep. 2020; 8: 9. https://doi.org/10.1007/s40134-020-00352-4.
29. Shen E, Li C, Zhao K, et al. Image quality enhancement for digital breast tomosynthesis: high-density object artifact reduction. J Imaging Inform Med. 2024; 37(5): 2649–61. https://doi.org/10.1007/s10278-024-01084-z.
30. Mohindra N, Neyaz Z, Agrawal V, et al. Impact of addition of digital breast tomosynthesis to digital mammography in lesion characterization in breast cancer patients. Int J Appl Basic Med Res. 2018; 8(1): 33–7. https://doi.org/10.4103/ijabmr.IJABMR_372_16.
31. Lei J, Yang P, Zhang L, et al. Diagnostic accuracy of digital breast tomosynthesis versus digital mammography for benign and malignant lesions in breasts: a meta-analysis. Eur Radiol. 2014; 24(3): 595–602. https://doi.org/10.1007/s00330-013-3012-x.
32. Климова Н.В., Белоцерковцева Л.Д., Кузнецов А.А. Возможности цифрового рентгеновского томосинтеза в скрининговой программе женщин с высокой маммографической плотностью (обзор литературы с собственными клиническими наблюдениями). Радиология – практика. 2021; 1: 64–79. [Klimova NV, Belocerkovceva LD, Kuznecov AA. Possibilities of digital X-ray tomosynthesis in the screening program for women with high mammographic density (literature review with their own сlinical оbservations). Radiology and Practice. 2021; 1: 64–79 (in Russ).]
33. Olinder J, Johnson K, Åkesson A, et al. Impact of breast density on diagnostic accuracy in digital breast tomosynthesis versus digital mammography: results from a European screening trial. Breast Cancer Res. 2023; 25: 116. https://doi.org/10.1186/s13058-023-01712-6.
34. Lowry KP, Coley RY, Miglioretti DL, et al. Screening performance of digital breast tomosynthesis vs digital mammography in community practice by patient age, screening round, and breast density. JAMA Netw Open. 2020; 3(7): e2011792. https://doi.org/10.1001/jamanetworkopen.2020.11792.
35. Weigel S, Heindel W, Hense HW, et al. Breast density and breast cancer screening with digital breast tomosynthesis: a TOSYMA trial subanalysis. Radiology. 2023; 306(2): e221006. https://doi.org/10.1148/radiol.221006.
36. Østerås BH, Martinsen ACT, Gullien R, Skaane P. Digital mammography versus breast tomosynthesis: impact of breast density on diagnostic performance in population-based screening. Radiology. 2019; 293(1): 60–8. https://doi.org/10.1148/radiol.2019190425.
Review
For citations:
Fatkhutdinova A.T., Yusupova A.F., Khairtdinova K.Sh. Digital Breast Tomosynthesis as a Tool to Reduce False-Positive Mammography Results: a Comparative Analysis of Diagnostic Accuracy. Journal of radiology and nuclear medicine. 2025;106(1-3):17-26. https://doi.org/10.20862/0042-4676-2025-106-1-3-17-26