Preview

Вестник рентгенологии и радиологии

Расширенный поиск

Возможности магнитно-резонансной томографии в оценке эффективности фокального лечения рака предстательной железы

https://doi.org/10.20862/0042-4676-2023-104-1-90-100

Аннотация

Рак предстательной железы (РПЖ) занимает второе место в структуре онкологической заболеваемости среди мужчин, причем частота встречаемости локализованных форм выше в странах с высоким уровнем дохода. На настоящий момент существует множество вариантов лечения локализованного РПЖ: начиная c тактики активного наблюдения и заканчивая методами фокальной терапии или радикальными подходами к лечению. С учетом того что многие пациенты заинтересованы в сохранении исходного уровня жизни и минимизации побочных эффектов, фокальная терапия представляет большой интерес не только для самих больных, но и для практикующих врачей-урологов. Магнитно-резонансная томография является одним из ведущих методов как первичной диагностики РПЖ, так и последующей оценки эффективности лечения, в т.ч. и после фокальной терапии. Мы предлагаем обобщенные данные анализа актуальной медицинской литературы по указанной теме.

Об авторах

Л. Р. Абуладзе
ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий» Департамента здравоохранения г. Москвы; ФГБУ «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Минздрава России
Россия

Абуладзе Лия Руслановна, мл. науч. сотр. сектора стандартизации и контроля качества отдела инновационных технологий; ординатор кафедры рентгенологии и  магнитно-резонансных исследований 

ул. Петровка, 24, стр. 1, Москва, 127051;
ул. Большая Серпуховская, 27, Москва, 115093



А. В. Говоров
ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

Говоров Александр Викторович, д. м. н., профессор кафедры урологии 

ул. Делегатская, 20, стр. 1, Москва, 127473



В. Е. Синицын
ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий» Департамента здравоохранения г. Москвы; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия

Синицын Валентин Евгеньевич, д. м. н., профессор, руководитель по развитию международного научного партнерства; заведующий кафедрой лучевой диагностики факультета фундаментальной медицины 

ул. Петровка, 24, стр. 1, Москва, 127051;
Ленинские горы, 1, Москва, 119991



Список литературы

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359–86. http://doi.org/10.1002/ijc.29210.

2. Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). URL: https://glavonco.ru/cancer_register/Забол_2020_Электр.pdf (дата обращения 10.02.2023).

3. Patel AR, Klein EA. Risk factors for prostate cancer. Nat Clin Pract Urol. 2009; 6(2): 87–95. http://doi.org/10.1038/ncpuro1290.

4. Bleyer A, Spreafico F, Barr R. Prostate cancer in young men: an emerging young adult and older adolescent challenge. Cancer. 2020; 126(1): 46–57. http://doi.org/10.1002/cncr.32498.

5. Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett. 2022; 525: 9–21. http://doi.org/10.1016/j.canlet.2021.10.027.

6. Lowrance W, Breau R, Chou R, et al. AUA / ASTRO / SUO Guideline. Part I. J Urol. 2021; 205(1): 14–21. http://doi.org/10.1097/JU.0000000000001375.

7. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018; 8(12): a030361. http://doi.org/10.1101/cshperspect.a030361.

8. Клинические рекомендации. Рак предстательной железы. 2021. URL: https://cr.minzdrav.gov.ru/recomend/12_3 (дата обращения 10.02.2023).

9. Borkowetz A, Blana A, Böhmer D, et al. German S3 evidencebased guidelines on focal therapy in localized prostate cancer: the first evidence-based guidelines on focal therapy. Urol Int. 2022; 106(5): 431–9. http://doi.org/10.1159/000521882.

10. Hopstaken JS, Bomers JGR, Sedelaar MJP, et al. An updated systematic review on focal therapy in localized prostate cancer: what has changed over the past 5 years? Eur Urol. 2022; 81(1): 5–33. http://doi.org/10.1016/j.eururo.2021.08.005.

11. Turkbey B, Albert PS, Kurdziel K, Choyke PL. Imaging localized prostate cancer: current approaches and new developments. AJR Am J Roentgenol. 2009; 192(6): 1471–80. http://doi.org/10.2214/AJR.09.2527.

12. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012; 22(4): 746–57. http://doi.org/10.1007/s00330-011-2377-y.

13. Park SY, Jung DC, Oh YT, et al. Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology. 2016; 280(1): 108–16. http://doi.org/10.1148/radiol.16151133.

14. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol. 2019; 76(3): 340–51. http://doi.org/10.1016/j.eururo.2019.02.033.

15. Callender T, Emberton M, Morris S, et al. Benefit, harm, and cost-effectiveness associated with magnetic resonance imaging before biopsy in age-based and risk-stratified screening for prostate cancer. JAMA Netw Open. 2021; 4: 1–12. https://doi.org/10.1001/jamanetworkopen.2020.37657.

16. Tamada T, Kido A, Yamamoto A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1. J Magn Reson Imaging. 2021; 53: 283–91. https://doi.org/10.1002/jmri.27283.

17. Абуладзе Л.Р., Семенов Д.С., Панина О.Ю., Васильев Ю.А. Оптимизированный протокол бипараметрической магнитно-резонансной томографии для диагностики рака предстательной железы. Digital Diagnostics. 2022: 3(3): 166–77. http://doi.org/10.17816/DD108484.

18. Tay KJ, Scheltema MJ, Ahmed HU, et al. Patient selection for prostate focal therapy in the era of active surveillance: an International Delphi Consensus Project. Prostate Cancer Prostatic Dis. 2017; 20(3): 294–9. http://doi.org/10.1038/pcan.2017.8.

19. Paxton M, Barbalat E, Perlis N, et al. Role of multiparametric MRI in long-term surveillance following focal laser ablation of prostate cancer. Br J Radiol. 2022; 95(1131): 20210414. http://doi.org/10.1259/bjr.20210414.

20. Cordeiro ER, Cathelineau X, Thüroff S, et al. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int. 2012; 110(9): 1228–42. http://doi.org/10.1111/j.1464-410X.2012.11262.x.

21. Escoffre JM, Bouakaz A (Eds). Therapeutic ultrasound. Springer; 2016: 476 pp. http://doi.org/10.1007/978-3-319-22536-4.

22. Azzouz H, de la Rosette JJ. HIFU: local treatment of prostate cancer. EAU-EBU Updat Ser. 2006; 4: 62–70. https://doi.org/10.1016/j.eeus.2006.01.002.

23. He Y, Tan P, He M, et al. The primary treatment of prostate cancer with high-intensity focused ultrasound: a systematic review and meta-analysis. Medicine (Baltimore). 2020; 99(41): e22610. http://doi.org/10.1097/MD.0000000000022610.

24. Mearini L, Porena M. Transrectal high-intensity focused ultrasound for the treatment of prostate cancer: past, present, and future. Indian J Urol. 2010; 26(1): 4–11. http://doi.org/10.4103/0970-1591.60436.

25. Huber PM, Afzal N, Arya M, et al. Focal HIFU therapy for anterior compared to posterior prostate cancer lesions. World J Urol. 2021; 39(4): 1115–9. http://doi.org/10.1007/s00345-020-03297-7.

26. Mearini L, D’Urso L, Collura D, et al. High-intensity focused ultrasound for the treatment of prostate cancer: a prospective trial with long-term follow-up. Scand J Urol. 2015; 49(4): 267–74. http://doi.org/10.3109/21681805.2014.988174.

27. Crouzet S, Chapelon JY, Rouvière O, et al. Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound: oncologic outcomes and morbidity in 1002 patients. Eur Urol. 2014; 65(5): 907–14. http://doi.org/10.1016/j.eururo.2013.04.039.

28. Muller BG, Fütterer JJ, Gupta RT, et al. The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int. 2014; 113(2): 218–27. http://doi.org/10.1111/bju.12243.

29. Rouvière O, Lyonnet D, Raudrant A, et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol. 2001; 40(3): 265–74. http://doi.org/10.1159/000049786.

30. Schaudinn A, Michaelis J, Franz T, et al. High-intensity focused ultrasound (HIFU) hemiablation of the prostate: late follow-up MRI findings in non-recurrent patients. Eur J Radiol. 2021; 144: 109957. http://doi.org/10.1016/j.ejrad.2021.109957.

31. Возможности магнитно-резонансной томографии в оценке состояния предстательной железы после проведенной HiFu терапии у больных раком предстательной железы. URL: https://uroweb.ru/article/vozmozhnosti-magnitnorezonansnoi-tomografii-v-otsenke-sostoyniya-predstatelnoizhelezy-posle-provedennoi-hifu-terapii (дата обращения 12.09.2022).

32. Абоян И.А., Бадьян К.И., Маликов Л.Л. МРТ в диагностике рецидива рака предстательной железы после HIFU и криоабляции. В кн.: Сборник трудов XV конгресса «Мужское здоровье». Сочи; 2019.

33. Kim CK, Park BK, Lee HM, et al. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am J Roentgenol. 2008; 190(5): 1180–6. http://doi.org/10.2214/AJR.07.2924.

34. Lotte R, Lafourcade A, Mozer P, et al. Multiparametric MRI for suspected recurrent prostate cancer after HIFU: is DCE still needed? Eur Radiol. 2018; 28(9): 3760–9. http://doi.org/10.1007/s00330-018-5352-z.

35. Rosset R, Bratan F, Crouzet S, et al. Can pre- and postoperative magnetic resonance imaging predict recurrence-free survival after whole-gland high-intensity focused ablation for prostate cancer? Eur Radiol. 2017; 27(4): 1768–75. http://doi.org/10.1007/s00330-016-4491-3.

36. Kirkham AP, Emberton M, Hoh IM, et al. MR imaging of prostate after treatment with high-intensity focused ultrasound. Radiology. 2008; 246(3): 833–44. http://doi.org/10.1148/radiol.2463062080.

37. Bui TL, Glavis-Bloom J, Chahine C, et al. Prostate minimally invasive procedures: complications and normal vs. abnormal findings on multiparametric magnetic resonance imaging (mpMRI). Abdom Radiol (NY). 2021; 46(9): 4388–400. http://doi.org/10.1007/s00261-021-03097-6.

38. Evans AJ. Treatment effects in prostate cancer. Mod Pathol. 2018; 31(1): 110–21. https://doi.org/10.1038/modpathol.2017.158.

39. Martino P, Scattoni V, Galosi AB, et al. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol. 2011; 29(5): 595–605. http://doi.org/10.1007/s00345-011-0687-y.

40. Poissonnier L, Chapelon JY, Rouvière O, et al. Control of prostate cancer by transrectal HIFU in 227 patients. Eur Urol. 2007; 51(2): 381–7. http://doi.org/10.1016/j.eururo.2006.04.012.

41. Dickinson L, Ahmed HU, Hindley RG, et al. Prostate-specific antigen vs. magnetic resonance imaging parameters for assessing oncological outcomes after high intensity-focused ultrasound focal therapy for localized prostate cancer. Urol Oncol. 2017; 35(1): 30.e9–15. http://doi.org/10.1016/j.urolonc.2016.07.015.

42. Говоров А.В., Пушкарь Д.Ю., Васильев А.О. Криоаблация предстательной железы. Методические рекомендации № 20. 2015: 8–10.

43. Guo RQ, Guo XX, Li YM, et al. Cryoablation, high-intensity focused ultrasound, irreversible electroporation, and vasculartargeted photodynamic therapy for prostate cancer: a systemic review and meta-analysis. Int J Clin Oncol. 2021; 26(3): 461–84. http://doi.org/10.1007/s10147-020-01847-y.

44. Говоров А.В., Васильев А.О., Пушкарь Д.Ю. Криохирургия рака предстательной железы. Consilium Medicum. 2015; 17(7): 29–32.

45. Sze C, Tsivian E, Tay KJ, et al. Anterior gland focal cryoablation: proof-of-concept primary prostate cancer treatment in select men with localized anterior cancers detected by multiparametric magnetic resonance imaging. BMC Urol. 2019; 19(1): 127. http://doi.org/10.1186/s12894-019-0562-5.

46. Overduin CG, Jenniskens SFM, Sedelaar JPM, et al. Percutaneous MR-guided focal cryoablation for recurrent prostate cancer following radiation therapy: retrospective analysis of iceball margins and outcomes. Eur Radiol. 2017; 27(11): 4828–36. http://doi.org/10.1007/s00330-017-4833-9.

47. Patel P, Mathew MS, Trilisky I, Oto A. Multiparametric MR imaging of the prostate after treatment of prostate cancer. Radiographics. 2018; 38(2): 437–49. http://doi.org/10.1148/rg.2018170147.

48. De Visschere PJ, De Meerleer GO, Fütterer JJ, Villeirs GM. Role of MRI in follow-up after focal therapy for prostate carcinoma. AJR Am J Roentgenol. 2010; 194(6): 1427–33. http://doi.org/10.2214/AJR.10.4263.

49. Kongnyuy M, Halpern DM, Liu CC, et al. 3-T multiparametric MRI characteristics of prostate cancer patients suspicious for biochemical recurrence after primary focal cryosurgery (hemiablation). Int Urol Nephrol. 2017; 49(11): 1947–54. http://doi.org/10.1007/s11255-017-1670-3.

50. Hötker AM, Meier A, Mazaheri Y, et al. Temporal changes in MRI appearance of the prostate after focal ablation. Abdom Radiol (NY). 2019; 44(1): 272–8. http://doi.org/10.1007/s00261-018-1715-9.

51. Rastinehad AR, Siegel DN, Wood BJ, McClure T (Eds). Interventional urology. Springer; 2022. http://doi.org/10.1007/978-3-030-73565-4.

52. Chao B, Lepor H. 5-year outcomes following focal laser ablation of prostate cancer. Urology. 2021; 155: 124–9. http://doi.org/10.1016/j.urology.2021.03.054.

53. Walser E, Nance A, Ynalvez L, et al. Focal laser ablation of prostate cancer: results in 120 patients with low- to intermediate-risk disease. J Vasc Interv Radiol. 2019; 30(3): 401–9.e2. http://doi.org/10.1016/j.jvir.2018.09.016.

54. Westin C, Chatterjee A, Ku E, et al. MRI findings after MRI-guided focal laser ablation of prostate cancer. AJR Am J Roentgenol. 2018; 211(3): 595–604. http://doi.org/10.2214/AJR.17.19201.

55. Koopman AG, Jenniskens SF, Fütterer JJ. Magnetic resonance imaging assessment after therapy in prostate cancer. Top Magn Reson Imaging. 2020; 29(1): 47–58. http://doi.org/10.1097/RMR.0000000000000231.

56. Felker ER, Raman SS, Lu DS, et al. Utility of multiparametric MRI for predicting residual clinically significant prostate cancer after focal laser ablation. AJR Am J Roentgenol. 2019; 213(6): 1253–8. http://doi.org/10.2214/AJR.19.21637.

57. Osuchowski M, Bartusik-Aebisher D, Osuchowski F, Aebisher D. Photodynamic therapy for prostate cancer – a narrative review. Photodiagnosis Photodyn Ther. 2021; 33: 102158. http://doi.org/10.1016/j.pdpdt.2020.102158.

58. Trachtenberg J, Weersink RA, Davidson SR, et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 2008; 102(5): 556–62. http://doi.org/10.1111/j.1464-410X.2008.07753.x.

59. Azzouzi AR, Vincendeau S, Barret E, et al. Padeliporfin vasculartargeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017; 18(2): 181–91. http://doi.org/10.1016/S1470-2045(16)30661-1.

60. Kulik M, Nedelcu C, Martin F, et al. Post-treatment MRI aspects of photodynamic therapy for prostate cancer. Insights Imaging. 2014; 5(6): 697–713. http://doi.org/10.1007/s13244-014-0359-8.

61. Ting F, Tran M, Böhm M, et al. Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control. Prostate Cancer Prostatic Dis. 2016; 19(1): 46–52. http://doi.org/10.1038/pcan.2015.47.

62. Guenther E, Klein N, Zapf S, et al. Prostate cancer treatment with irreversible electroporation (IRE): safety, efficacy and clinical experience in 471 treatments. PLoS One. 2019; 14(4): e0215093. http://doi.org/10.1371/journal.pone.0215093.

63. Blazevski A, Scheltema MJ, Yuen B, et al. Oncological and quality-of-life outcomes following focal irreversible electroporation as primary treatment for localised prostate cancer: a biopsy-monitored prospective cohort. Eur Urol Oncol. 2020; 3(3): 283–90. http://doi.org/10.1016/j.euo.2019.04.008.

64. Scheltema MJ, Chang JI, van den Bos W, et al. Preliminary diagnostic accuracy of multiparametric magnetic resonance imaging to detect residual prostate cancer following focal therapy with irreversible electroporation. Eur Urol Focus. 2019; 5(4): 585–91. http://doi.org/10.1016/j.euf.2017.10.007.

65. van den Bos W, de Bruin DM, van Randen A, et al. MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase I-II study in patients undergoing IRE followed by radical prostatectomy. Eur Radiol. 2016; 26(7): 2252–60. http://doi.org/10.1007/s00330-015-4042-3.

66. Wang H, Xue W, Yan W, et al. Extended focal ablation of localized prostate cancer with high-frequency irreversible electroporation: a nonrandomized controlled trial. JAMA Surg. 2022; 157(8): 693–700. http://doi.org/10.1001/jamasurg.2022.2230.

67. Aydin AM, Gage K, Dhillon J, et al. Focal bipolar radiofrequency ablation for localized prostate cancer: safety and feasibility. Int J Urol. 2020; 27(10): 882–9. http://doi.org/10.1111/iju.14321.

68. Feng C, Hu B, Hu B, et al. Comparative study of conventional US, contrast enhanced US and enhanced MR for the follow-up of prostatic radiofrequency ablation. Exp Ther Med. 2017; 13(6): 3535–42. http://doi.org/10.3892/etm.2017.4399.

69. Zaorsky NG, Davis BJ, Nguyen PL, et al. The evolution of brachytherapy for prostate cancer. Nat Rev Urol. 2017; 14(7): 415–39. http://doi.org/10.1038/nrurol.2017.76.

70. Matsuoka Y, Uehara S, Toda K, et al. Focal brachytherapy for localized prostate cancer: 5.7-year clinical outcomes and a pair-matched study with radical prostatectomy. Urol Oncol. 2022; 40(4): 161.e15–23. http://doi.org/10.1016/j.urolonc.2021.11.009.

71. Valle LF, Greer MD, Shih JH, et al. Multiparametric MRI for the detection of local recurrence of prostate cancer in the setting of biochemical recurrence after low dose rate brachytherapy. Diagn Interv Radiol. 2018; 24(1): 46–53. http://doi.org/10.5152/dir.2018.17285.

72. Tamada T, Sone T, Jo Y, et al. Locally recurrent prostate cancer after high-dose-rate brachytherapy: the value of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging in localizing tumors. AJR Am J Roentgenol. 2011; 197(2): 408–14. http://doi.org/10.2214/AJR.10.5772.

73. Panebianco V, Villeirs G, Weinreb JC, et al. Prostate magnetic resonance imaging for local recurrence reporting (PI-RR): international consensus -based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy. Eur Urol Oncol. 2021; 4(6): 868–76. http://doi.org/10.1016/j.euo.2021.01.003.

74. Gaur S, Turkbey B. Prostate MR imaging for posttreatment evaluation and recurrence. Urol Clin North Am. 2018; 45(3): 467–9. http://doi.org/10.1016/j.ucl.2018.03.011.


Рецензия

Для цитирования:


Абуладзе Л.Р., Говоров А.В., Синицын В.Е. Возможности магнитно-резонансной томографии в оценке эффективности фокального лечения рака предстательной железы. Вестник рентгенологии и радиологии. 2023;104(1):90-100. https://doi.org/10.20862/0042-4676-2023-104-1-90-100

For citation:


Abuladze L.R., Govorov A.V., Sinitsyn V.E. Magnetic Resonance Imaging Evaluation of Focal Therapy Efficacy for Prostate Cancer. Journal of radiology and nuclear medicine. 2023;104(1):90-100. (In Russ.) https://doi.org/10.20862/0042-4676-2023-104-1-90-100

Просмотров: 520


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)