Автоматизированное ультразвуковое исследование в дообследовании женщин с рентгенологически плотной тканью молочных желез
https://doi.org/10.20862/0042-4676-2023-104-1-76-89
Аннотация
Представлен обзор современной зарубежной и отечественной литературы, посвященной методике автоматизированного ультразвукового исследования (АУЗИ) молочных желез. Поиск публикаций проведен в базах данных PubMed/MEDLINE и eLibrary. Обсуждаются ручное ультразвуковое исследование и АУЗИ молочных желез. Описана методика проведения АУЗИ молочных желез. Добавление АУЗИ к скрининговой маммографии приводит к увеличению выявляемости ранних инвазивных форм рака молочной железы без поражения аксиллярных лимфатических узлов (pT1a-bN0M0). Рассматривается возможное место АУЗИ в скрининговом алгоритме дополнительно к рентгеновской маммографии у женщин с плотным рентгенологическим фоном.
Об авторах
К. А. ЕлисееваРоссия
Елисеева Ксения Александровна, врач-рентгенолог, врач ультразвуковой диагностики отделения диагностики и лечения заболеваний молочных желез и репродуктивной системы филиала № 2 «Маммологический центр (клиника женского здоровья)»
ш. Энтузиастов, 86, стр. 6, Москва, 111123
А. П. Наумов
Россия
Наумов Александр Павлович, врач-рентгенолог, врач ультразвуковой диагностики отделения диагностики и лечения заболеваний молочных желез и репродуктивной системы филиала № 2 «Маммологический центр (клиника женского здоровья)»
ш. Энтузиастов, 86, стр. 6, Москва, 111123
Л. И. Касаткина
Россия
Касаткина Лариса Изосимовна, заведующая отделением диагностики и лечения заболеваний молочных желез и репродуктивной системы филиала № 2 «Маммологический центр (клиника женского здоровья)»
ш. Энтузиастов, 86, стр. 6, Москва, 111123
А. Б. Абдураимов
Россия
Абдураимов Адхамжон Бахтиерович, д. м. н., профессор, заместитель директора по образовательной деятельности, руководитель филиала № 2 «Маммологический центр (клиника женского здоровья)»
ш. Энтузиастов, 86, стр. 6, Москва, 111123
Список литературы
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71(1): 7–33. http://doi.org/10.3322/caac.21654.
2. International Agency for Research on Cancer. Global Cancer Observatory. Available at: https://gco.iarc.fr/ (accessed October 21, 2022).
3. Tabár L, Vitak B, Chen TH, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011; 260(3): 658–63. http://doi.org/10.1148/radiol.11110469.
4. Niell BL, Freer PE, Weinfurtner RJ, et al. Screening for breast cancer. Radiol Clin North Am. 2017; 55(6): 1145–62. http://doi.org/10.1016/j.rcl.2017.06.004.
5. Корженкова Г.П. Массовое маммографиечское обследование женского населения с целью выявления рака молочной железы. Лучевая диагностика и терапия. 2015; 2: 101–7.
6. Mandelson MT, Oestreicher N, Porter PL, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000; 92(13): 1081–7. http://doi.org/10.1093/jnci/92.13.1081.
7. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003; 138(3): 168–75. http://doi.org/10.7326/0003-4819-138-3-200302040-00008.
8. van der Waal D, Ripping TM, Verbeek AL, Broeders MJ. Breast cancer screening effect across breast density strata: a casecontrol study. Int J Cancer. 2017; 140(1): 41–9. http://doi.org/10.1002/ijc.30430.
9. Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology. 2015; 274(3): 663–73. http://doi.org/10.1148/radiol.14132832.
10. Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol. 2015; 204(2): 234–40. http://doi.org/10.2214/AJR.13.12072.
11. Lee CI, Chen LE, Elmore JG. Risk-based breast cancer screening: implications of breast density. Med Clin North Am. 2017; 101(4): 725–41. http://doi.org/10.1016/j.mcna.2017.03.005.
12. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007; 356(3): 227–36. http://doi.org/10.1056/NEJMoa062790.
13. Лабазанова П.Г., Рожкова Н.И., Бурдина И.И. и др. Маммографическая плотность и риск развития рака молочной железы. Взгляд на историю изучения вопроса. Российский электронный журнал лучевой диагностики. 2020; 10(2): 205–22. http://doi.org/10.21569/2222-7415-2020-10-2-205-222.
14. Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® Atlas. Breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.
15. Gilbert FJ, Tucker L, Gillan MG, et al. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess. 2015; 19(4): i-xxv, 1–136. http://doi.org/10.3310/hta19040.
16. Melnikow J, Fenton JJ, Whitlock EP, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2016; 164(4): 268–78. http://doi.org/10.7326/M15-1789.
17. Destounis SV, Santacroce A, Arieno A. Update on breast density, risk estimation, and supplemental screening. AJR Am J Roentgenol. 2020; 214(2): 296–305. http://doi.org/10.2214/AJR.19.21994.
18. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002; 225(1): 165–75. http://doi.org/10.1148/radiol.2251011667.
19. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008; 299(18): 2151–63. http://doi.org/10.1001/jama.299.18.2151.
20. Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012; 307(13): 1394–404. http://doi.org/10.1001/jama.2012.388.
21. Berg WA, Bandos AI, Mendelson EBM, et al. Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. J Natl Cancer Inst. 2016; 108(4): 1–8. http://doi.org/10.1093/jnci/djv367.
22. Corsetti V, Houssami N, Ghirardi M, et al. Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: interval breast cancers at 1 year follow-up. Eur J Cancer. 2011; 47(7): 1021–6. http://doi.org/10.1016/j.ejca.2010.12.002.
23. Ohuchi N, Suzuki A, Sobue T, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet. 2016; 387(10016): 341–8. http://doi.org/10.1016/S0140-6736(15)00774-6.
24. Destounis S, Arieno A, Morgan R. New York State Breast Density Mandate: follow-up data with screening sonography. J Ultrasound Med. 2017; 36(12): 2511–7. http://doi.org/10.1002/jum.14294.
25. Tagliafico AS, Mariscotti G, Valdora F, et al. A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur J Cancer. 2018; 104: 39–46. http://doi.org/10.1016/j.ejca.2018.08.029.
26. Butler RS, Hooley RJ. Screening breast ultrasound: update after 10 years of Breast Density Notification Laws. AJR Am J Roentgenol. 2020; 214(6): 1424–35. http://doi.org/10.2214/AJR.19.22275.
27. Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018; 44(1): 37–70. http://doi.org/10.1016/j.ultrasmedbio.2017.09.012.
28. Kwon BR, Chang JM, Kim SY, et al. Automated breast ultrasound system for breast cancer evaluation: diagnostic performance of the two-view scan technique in women with small breasts. Korean J Radiol. 2020; 21(1): 25–32. http://doi.org/10.3348/kjr.2019.0275.
29. Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018; 9; 449–61. http://doi.org/10.1007/s13244-018-0636-z.
30. Kaplan SS. Automated whole breast ultrasound. Radiol Clin North Am. 2014; 52(3): 539–46. http://doi.org/10.1016/j.rcl.2014.01.002.
31. van Zelst JCM, Mann RM. Automated three-dimensional breast US for screening: technique, artifacts, and lesion characterization. Radiographics. 2018; 38(3): 663–83. http://doi.org/10.1148/rg.2018170162.
32. Kim SH, Kim HH, Moon WK. Automated breast ultrasound screening for dense breasts. Korean J Radiol. 2020; 21(1): 15–24. http://doi.org/10.3348/kjr.2019.0176.
33. Mundinger A. 3D supine automated ultrasound (SAUS, ABUS, ABVS) for supplemental screening women with dense breasts. J Breast Health. 2016; 12(2): 52–5. http://doi.org/10.5152/tjbh.2016.2940.
34. Spear GG, Mendelson EB. Automated breast ultrasound: supplemental screening for average-risk women with dense breasts. Clin Imaging. 2021; 76: 15–25. http://doi.org/10.1016/j.clinimag.2020.12.007.
35. Vourtsis A. Three-dimensional automated breast ultrasound: technical aspects and first results. Diagn Interv Imaging. 2019; 100(10): 579–92. http://doi.org/10.1016/j.diii.2019.03.012.
36. Kim YJ, Kim SH, Jeh SK, et al. Gel pad application for automated breast sonography. J Ultrasound Med. 2015; 34(4): 713–9. http://doi.org/10.7863/ultra.34.4.713.
37. FDA PMA P110006 summary of safety and effectiveness data (SSED). Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110006b.pdf (accessed October 21, 2022).
38. Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol. 2010; 20(3): 734–42. http://doi.org/10.1007/s00330-009-1588-y.
39. Choi WJ, Cha JH, Kim HH, et al. Comparison of automated breast volume scanning and hand-held ultrasound in the detection of breast cancer: an analysis of 5,566 patient evaluations. Asian Pac J Cancer Prev. 2014; 15(21): 9101–5. http://doi.org/10.7314/apjcp.2014.15.21.9101.
40. Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol. 2016; 85(9): 1554–63. http://doi.org/10.1016/j.ejrad.2016.06.004.
41. Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women. Eur Radiol. 2018; 28(2): 592–601. http://doi.org/10.1007/s00330-017-5011-9.
42. van Zelst JCM, Platel B, Karssemeijer N, Mann RM. Multiplanar reconstructions of 3D automated breast ultrasound improve lesion differentiation by radiologists. Acad Radiol. 2015; 22(12): 1489–96. http://doi.org/10.1016/j.acra.2015.08.006.
43. Lin X, Wang J, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol. 2012; 81(5): 873–8. http://doi.org/10.1016/j.ejrad.2011.02.038.
44. Chen L, Chen Y, Diao XH, et al. Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses. Ultrasound Med Biol. 2013; 39(10): 1735–42. http://doi.org/10.1016/j.ultrasmedbio.2013.04.003.
45. Boca Bene I, Ciurea AI, Ciortea CA, Dudea SM. Pros and cons for automated breast ultrasound (ABUS): a narrative review. J Pers Med. 2021; 11(8): 703. http://doi.org/10.3390/jpm11080703.
46. Schmachtenberg C, Fischer T, Hamm B, Bick U. Diagnostic performance of automated breast volume scanning (ABVS) compared to handheld ultrasonography with breast MRI as the gold standard. Acad Radiol. 2017; 24(8): 954–61. http://doi.org/10.1016/j.acra.2017.01.021.
47. Hellgren R, Dickman P, Leifland K, et al. Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening. Acta Radiol. 2017; 58(5): 515–20. http://doi.org/10.1177/028418511666542.
48. Choi EJ, Choi H, Park EH, et al. Evaluation of an automated breast volume scanner according to the fifth edition of BI-RADS for breast ultrasound compared with hand-held ultrasound. Eur J Radiol. 2018; 99: 138–45. http://doi.org/10.1016/j.ejrad.2018.01.002.
49. Wang L, Qi ZH. Automatic breast volume scanner versus handheld ultrasound in differentiation of benign and malignant breast lesions: a systematic review and metaanalysis. Ultrasound Med Biol. 2019; 45(8): 1874–81. http://doi.org/10.1016/j.ultrasmedbio.2019.04.028.
50. Golatta M, Baggs C, Schweitzer-Martin M, et al. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography. Arch Gynecol Obstet. 2015; 291(4): 889–95. http://doi.org/10.1007/s00404-014-3509-9.
51. Якобс О.Э., Каприн А.Д., Рожкова Н.И. и др. Виртуальная сонография молочной железы. Опыт клинического применения. Медицинская визуализация. 2014; 2: 22–31.
52. Гажонова В.Е., Ефремова М.П., Хлюстина Е.М. и др. Автоматическая сонотомография молочных желез (Automated Breast Volume Sonography) – новая методика диагностики рака. Медицинская визуализация. 2015; 2: 67–77.
53. Солодкий В.А., Меских Е.В, Эрштейн М.А. и др. Роль и возможности автоматизированного ультразвукового сканирования в скрининге рака мoлoчной железы у женщин с высокой плотностью тканей молочных желез. Медицинская визуализация. 2018; 5: 21–30. http://doi.org/10.24835/1607-0763-2018-5-21-30.
54. Skaane P, Gullien R, Eben EB, et al. Interpretation of automatеd brеast ultrasound (ABUS) with and withоut knоwledge of mammography: a reader performance study. Acta Radiol. 2015; 56(4): 404–12. http://doi.org/10.1177/0284185114528835.
55. Гажонова В.Е. Ультразвуковой томосинтез молочных желез. М.: Проспект; 2015: 116 с.
56. Lee SH, Yi A, Jang MJ, et al. Supplemental screening breast US in women with negative mammographic findings: effect of routine axillary scanning. Radiology. 2018; 286(3): 830–7. http://doi.org/10.1148/radiol.2017171218.
57. van Zеlst JCM, Tan T, Clausеr P, et al. Dedicated computeraided detеction software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts. Eur Radiol. 2018; 28(7): 2996–3006. http://doi.org/10.1007/s00330-017-5280-3.
58. Jiang Y, Inciardi MF, Edwards AV, Papaioannou J. Interpretation time using a concurrent-read computer-aided detection system for automatеd breast ultrasound in breast cancer screening of women with dеnse breast tissue. AJR Am J Roentgenol. 2018; 211(2): 452–61. http://doi.org/10.2214/AJR.18.19516.
59. Thigpen D, Kappler A, Brem R. The role of ultrasound in screening dense breasts – a review of the literature and practical solutions for implementation. Diagnostics (Basel). 2018; 8(1): 20. http://doi.org/10.3390/diagnostics8010020.
Рецензия
Для цитирования:
Елисеева К.А., Наумов А.П., Касаткина Л.И., Абдураимов А.Б. Автоматизированное ультразвуковое исследование в дообследовании женщин с рентгенологически плотной тканью молочных желез. Вестник рентгенологии и радиологии. 2023;104(1):76-89. https://doi.org/10.20862/0042-4676-2023-104-1-76-89
For citation:
Eliseeva К.А., Naumov А.P., Kasatkina L.I., Abduraimov А.B. Automated Breast Ultrasound in Further Examination of Women with Dense Breasts. Journal of radiology and nuclear medicine. 2023;104(1):76-89. (In Russ.) https://doi.org/10.20862/0042-4676-2023-104-1-76-89

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 3.0 Непортированная