Radio morphological changes in the femoral and tibial condyles in patients with arthrosis deformans of the knee
https://doi.org/10.20862/0042-4676-2015-0-4-12-17
Abstract
Objective: to investigate the quantitative X-ray manifestations of gonarthrosis in patients in different age groups.
Material and methods. The results of radiography, computed tomography, and 64-slice multidetector computed tomography (MDCT) were analyzed in 86 patients aged 18 to 70 years with arthrosis deformans of the knee.
Results. Knee radiographic anatomic changes in arthrosis deformans are accompanied by the characteristic rearrangement of the femoral and tibial condyles. Quantitative bone density changes appear as an overall decrease in the bone mineral density of the femoral and tibial condyles in 18–35-year-old patients with arthrosis deformans (p<0.05) and a relative increase in that of medial tibial condyles in patients older than 55/60 years, in those with genu varum in particular.
Conclusion. In the patients with arthrosis deformans, the bone radio morphological changes detected by MDCT have a much wider range of qualitative and quantitative characteristics. The data on condylar bone density are directly related to a treatment choice. Data postprocessing using the current visualization programs of working stations identifies minor bone structural changes that are also of importance in solving the tactical problems of medical and surgical treatments.
About the Authors
G. V. D’yachkovaRussian Federation
MD, PhD, DSc, Professor, Head of Laboratory of X-ray and Ultrasonic Diagnostic Methods
N. V. Sazonova
Russian Federation
MD, PhD, DSc, Head of Clinical and Diagnostic Department
T. A. Larionova
Russian Federation
MD, PhD, Senior Researcher of Laboratory of X-ray and Ultrasonic Diagnostic Methods
K. A. D’yachkov
Russian Federation
MD, PhD, Leading Researcher of Laboratory of X-ray and Ultrasonic Diagnostic Methods
References
1. Bagirova G.G., Mayko O.Yu. Osteoarthrosis: epidemiology, clinical picture, diagnosis, treatment. Moscow: Arnebiya; 2005 (in Russian).
2. Bragina S.V., Matveev R.P. Structure of persistent disability in patients with gonarthrosis. Geniy ortopedii. 2011; 4: 96–9 (in Russian).
3. On the state of health of the population of the Russian Federation in 2002. State report of the RF Ministry of Health. Moscow: RAMN; 2003 (in Russian).
4. Nasonova V.A. The knee osteoarthrosis: causes of development, diagnosis and prevention. Consilium medicum. 2003; 5 (2): 90–5 (in Russian).
5. Hiligsmann M., Cooper C., Arden N., Boers M., Branco J.C., Luisa Brandi M. et al. Health economics in the field of osteoarthritis: an expert's consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum. 2013; 43 (3): 303–13.
6. Komatsu M., Kamimura M., Nakamura Y., Mukaiyama K., Ikegami S., Uchiyama S. et al. Rapid bone destruction in a patient with knee steoarthritis.
7. A case report and review of the literature. Clin. Cases Miner. Bone Metab. 2014; 11 (3): 232–5.
8. Buravtsov P.P., Teplen'kiy M.P. Treatment of patients with arthrosis of the tibiofemoral and patellofemoral joins using the Ilizarov fixator. Geniy ortopedii. 2014; 3: 42–5 (in Russian).
9. Shevtsov V.I., Karaseva T.Yu., Karasev E.A., Karasev A.G., Korkin A.Ya. Current technologies of treatment for patients with deforming arthrosis of the knee. Geniy ortopedii. 2009; 3: 17–23 (in Russian).
10. Bennell K.L., Hinman R.S. A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J. Sci. Med. Sport. 2011; 14 (1): 4–9.
11. Bultink I.E., Lems W.F. Osteoarthritis and osteoporosis: what is the overlap? Curr. Rheumatol. Rep. 2013; 15 (5): 328.
12. Feeley B.T., Gallo R.A., Sherman S., Williams R.J. Management of osteoarthritis of the knee in the active patient. J. Am. Acad. Orthop. Surg. 2010; 18 (7): 406–16.
13. Goldring M.B., Goldring S.R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N.Y. Acad. Sci. 2010; 1192: 230–7.
14. Mosher T.J., Walker E.A., PetscavageThomas J., Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthritis Cartilage. 2013; 21 (10): 1425–35.
15. Kerkhof H.J., Bierma-Zeinstra S.M., Arden N.K., Metrustry S., Castano Betancourt M., Hart D.J. et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann. Rheum. Dis. 2014; 73 (12): 2116–21.
16. Sharkey P.F., Cohen S.B., Leinberry C.F., Parvizi J. Subchondral bone marrow lesions associated with knee osteoarthritis. Am. J. Orthop. (Belle Mead NJ). 2012; 41 (9): 413–7.
17. Li G., Yin J., Gao J., Cheng T.S., Pavlos N.J., Zhang C. et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther. 2013; 15 (6): 223.
18. Kazakia G.J., Kuo D., Schooler J., Siddiqui S., Shanbhag S., Bernstein G. et al. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage. 2013; 21 (1): 94–101.
19. Hardcastle S.A., Dieppe P., Gregson C.L., Arden N.K., Spector T.D., Hart D.J. et al. Osteophytes, enthesophytes, and high bone mass: a bone-forming triad with potential relevance in osteoarthritis. Arthritis Rheumatol. 2014; 66 (9): 2429–39.
20. Luchikhina L.V., Baev A.A. The knee arthrosis: potential limits of visualization methods of studying. Travmatologiya i ortopediya Rossii. 2005; Special issue: 78–9 (in Russian).
21. Guinsburg M., Ventura-Rнos L., Bernal A., Hernбndez-Dнaz C., Pineda C. Usefulness, validity, and reliability of ultrasound in the diagnosis of osteoarthritis: a critical review of the literature. Gac. Med. Mex. 2013; 149 (5): 509–20.
22. Nevitt M.C., Zhang Y., Javaid M.K., Neogi T., Curtis J.R., Niu J. et al. High bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann. Rheum. Dis. 2010; 69 (1): 163–8.
23. Duncan S.T., Khazzam M.S., Burnham J.M., Spindler K.P., Dunn W.R., Wright R.W. Sensitivity of standing radiographs to detect knee arthritis: a systematic review of level I studies. Arthroscopy. 2015; 31(2): 321–8. DOI: 10.1016/j.arthro.2014.08.023. Epub. 2014. Oct. 11.
24. Cox L.G., van Donkelaar C.C., van Rietbergen B., Emans P.J., Ito K. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone. 2012; 50 (5): 1152–61.
25. Turmezei T.D., Fotiadou A., Lomas D.J., Hopper M.A., Poole K.E. A new CT grading system for hip osteoarthritis. Osteoarthritis Cartilage. 2014; 22 (10): 1360–6.
26. Fuller H., Fuller R., Pereira R.M. High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters. Rev. Bras. Reumatol. 2014; Nov. 26. pii: S0482-5004(14)00241-1. DOI: 10.1016/j.rbr.2014.07.010. Epub. ahead of print.
Review
For citations:
D’yachkova G.V., Sazonova N.V., Larionova T.A., D’yachkov K.A. Radio morphological changes in the femoral and tibial condyles in patients with arthrosis deformans of the knee. Journal of radiology and nuclear medicine. 2015;(4):12-17. (In Russ.) https://doi.org/10.20862/0042-4676-2015-0-4-12-17