Magnetic Resonance Imaging in the Evaluation of Hydrocephalus
https://doi.org/10.20862/0042-4676-2021-102-2-124-133
Abstract
Magnetic resonance imaging (MRI) is presently one of the main methods in the diagnosis of diseases associated with impaired fluid dynamics. Rapidly developing MRI technologies allow us to get more and more information about the functional organization of both individual components and the entire cerebrospinal fluid system (CSF) as a whole. One of the most common diseases accompanied by impaired CSF flow, where the superiority of MRI among other non-invasive methods is especially obvious, is hydrocephalus. The review considers the current capabilities of MRI in assessing CSF flow in various forms of hydrocephalus.
About the Authors
R. M. AfandievRussian Federation
Postgraduate
ul. 4th Tverskaya-Yamskaya, 16, Moscow, 125047, Russian Federation
L. M. Fadeeva
Russian Federation
Leading Engineer
ul. 4th Tverskaya-Yamskaya, 16, Moscow, 125047, Russian Federation
K. D. Solozhentseva
Russian Federation
Resident
ul. 4th Tverskaya-Yamskaya, 16, Moscow, 125047, Russian Federation
I. N. Pronin
Russian Federation
Dr. Med. Sc., Professor, Academician of RAS, Head of Department
ul. 4th Tverskaya-Yamskaya, 16, Moscow, 125047, Russian Federation
References
1. Iliff J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012; 4(147): 147ra111. https://doi.org/10.1126/scitranslmed.3003748.
2. Kornienko V.N., Pronin I.N. Diagnostic neuroradiology. 2nd ed. Vol. 3. Мoscow: IP “T.М. Andreeva”; 2009 (in Russ.)
3. Akhmetzyanov BM, Kremneva EI, Morozova SN, et al. Magnetic resonance imaging in evaluation of the cerebrospinal fluid system in norm and with various diseases of the nervous system. Russian Electronic Journal of Radiology. 2018; 8(1): 145–66 (in Russ.). https://doi.org/10.21569/2222-7415-2018-8-1-145-166.
4. Mack J, Squier W, Eastman J. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol. 2009; 39(3): 200–10. https://doi.org/10.1007/s00247-008-1084-6.
5. Tulupov AA, Gorev VN. dynamic properties of cerebrospinal fluid circulation by data of cine-MR-myelography. Part 2. Ventricular system and cortical parts of subarachnoid spaces. Bulletin of the NSU. Series: Biology, Clinical Medicine. 2009; 7(1): 29–35 (in Russ.).
6. Segal M, Pollay M. The secretion of cerebrospinal fluid. Exp Eye Res. 1977; 25: 127–48. https://doi.org/10.1016/S0014-4835(77)80012-2.
7. Reith W, Yilmaz U. Hydrocephalus and intracranial hypotension. Der Radiologe. 2012; 52: 821–6. https://doi.org/10.1007/s00117-012-2325-0.
8. Algin O, Turkbey B. Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. AJNR Am J Neuroradiol. 2013; 34(1): 14–22. https://doi.org/10.3174/ajnr.A2899.
9. Hingwala D, Chatterjee S, Kesavadas C, et al. Applications of 3D CISS sequence for problem solving in neuroimaging. Indian J Radiol Imaging. 2011; 21(2): 90–7. https://doi.org/10.4103/0971-3026.82283.
10. Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004: 27(3): 145–65. https://doi.org/10.1007/s10143-004-0326-9.
11. Dincer A, Ozek M. Radiologic evaluation of pediatric hydrocephalus. Childs Nerv Syst. 2011; 27(10): 1543–62. https://doi.org/10.1007/s00381-011-1559-x.
12. Pople I. Hydrocephalus and shunts: what the neurologist should know. J Neurol Neurosurg Psychiatry. 2002; 73(1): 17–22. https://doi.org/10.1136/jnnp.73.suppl_1.i17.
13. Algin O. Role of complex hydrocephalus in unsuccessful endoscopic third ventriculostomy. Childs Nerv Syst. 2010; 26(1): 3–4. https://doi.org/10.1007/s00381-009-1001-9.
14. Algin O, Turkbey B, Ozmen E, et al. Evaluation of spontaneous third ventriculostomy by three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) sequence by 3 T MR imaging: preliminary results with variant flip-angle mode. J Neuroradiol. 2013; 40(1): 11–8. https://doi.org/10.1016/j.neurad.2011.12.003.
15. Arutyunov NV, Kornienko VN, Melnikova-Pitshelauri TV, Fadeeva LN. Modern methods of studying csf system pathology. Diagnostic Radiology and Radiotherapy. 2012; 3(3): 117–26 (in Russ.).
16. Algin O, Hakyemez B, Parlak M. Phase-contrast MRI and 3D CISS versus contrast-enhanced MR cisternography on the evaluation of the aqueductal stenosis. Neuroradiology. 2010; 52(2): 99–108. https://doi.org/10.1007/s00234-009-0592-x.
17. Alves T, Ibrahim E, Martin B, et al. Principles, techniques, and clinical applications of phase-contrast magnetic resonance cerebrospinal fluid imaging. Neurographics. 2017; 7: 199–210. https://doi.org/10.3174/ng.3170204.
18. Battal B, Kocaoglu M, Bulakbasi N, et al. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011; 84(1004): 758–65. https://doi.org/10.1259/bjr/66206791.
19. Osborn A, Preece M. Intracranial cysts: Radiologicpathologic correlation and imaging approach. Radiology. 2006; 239(3): 650–64. https://doi.org/10.1148/radiol.2393050823.
20. Bejjani G. Association of the adult Chiari malformation and idiopathic intracranial hypertension: more than a coincidence. Med Hypotheses. 2003; 60(6): 859–63. https://doi.org/10.1016/s0306-9877(03)00064-1.
21. Bargallo N, Olondo L, Garcia A, et al. Functional analysis of third ventriculostomy patency by quantification of CSF stroke volume by using cine phase-contrast MR imaging. AJNR Am J Neuroradiol. 2005; 26(10): 2514–21.
22. Stivaros S, Sinclair D, Bromiley P, et al. Endoscopic third ventriculostomy: predicting outcome with phase-contrast MR imaging. Radiology. 2009; 252(3): 825–32. https://doi.org/10.1148/radiol.2523081398.
Review
For citations:
Afandiev R.M., Fadeeva L.M., Solozhentseva K.D., Pronin I.N. Magnetic Resonance Imaging in the Evaluation of Hydrocephalus. Journal of radiology and nuclear medicine. 2021;102(2):124-133. (In Russ.) https://doi.org/10.20862/0042-4676-2021-102-2-124-133