Preview

Journal of radiology and nuclear medicine

Advanced search

ROLE OF POSITRON EMISSION TOMOGRAPHY IN THE HEMODYNAMIC EVALUATION OF BRAIN TUMORS

https://doi.org/10.20862/0042-4676-2014-0-6-53-61

Abstract

The review analyzes the literature on the use positron emission tomography (PET) with various radiopharmaceuticals in the assessment of cerebral blood flow, perfusion, the blood-brain barrier in order to investigate the biological properties, diagnosis, differential diagnosis, staging of brain neoplasms and in the evaluation of the efficiency of their treatment. The main qualitative perfusion and cerebral blood flow indicators that can be identified by PET are described in detail and compared with morphological criteria for estimation of angiogenesis and the degree of tumor tissue vascularization.

About the Authors

A. A. Stanzhevskiy
Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the RF
Russian Federation

MD, PhD, DSc, Head of Scientific-organizational Department, Radiologist

poselok Pesochnyy, ul. Leningradskaya, 70, St. Petersburg, 197758



A. F. Panfilenko
Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the RF
Russian Federation

MD, PhD, Leading Research Associate of Department of Radiology

poselok Pesochnyy, ul. Leningradskaya, 70, St. Petersburg, 197758



L. A. Tyutin
Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the RF
Russian Federation

MD, PhD, DSc, Professor, Head of Department of Radiology, Deputy Director for Science

poselok Pesochnyy, ul. Leningradskaya, 70, St. Petersburg, 197758



Yu. R. Ilyushchenko
Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the RF
Russian Federation

Research Associate of Department of Radiology 

poselok Pesochnyy, ul. Leningradskaya, 70, St. Petersburg, 197758



References

1. Das S., Marsden P.A. Angiogenesis in glioblastoma. New Engl. J. Med. 2013; 369: 1561–3.

2. Mustafa D., Swagemakers S., French P., Luider T.M., van der Spek P., Kremer A., Kros J.M. Structural and expression differences between the vasculature of pilocytic astrocytomas and glioblastomas. J. Neuropathol. Exp. Neurol. 2013; 72: 1171–81.

3. Jain R., Gutierrez J., Narang J. et al. In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. Am. J. Neuroradiol. 2011; 32: 388–94.

4. Vaupel P., Kallinowski F., Okuni￾eff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research. 1989; 49: 6449–65.

5. Wintermark M., Sesay M., Barbier E. et al. Comparative overview of brain perfusion imaging techniques. J. Neuroradiol. 2005; 32: 294–314.

6. Granov A., Tyutin L., Schwarz Th. (еds). Positron emission tomography. Heildelberg: Springer; 2013.

7. Jain R. Perfusion CT imaging of brain tumors: an overview. Am. J. Neuroradiol. 2011; 32: 1570–7.

8. Aronen H.J., Pardo F.S., Kennedy D.N. et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Research. 2000; 6: 2189–200.

9. Schillaci O., Spanu A., Madeddu G. [99mTc] sestamibi and [99mTc] tetrofosmin in oncology: SPET and fusion imaging in lung cancer, malignant lymphomas and brain tumors. Quart. J. Nucl. Med. Molec. Imag. 2005; 49: 143–4.

10. Plate K.H., Breier G., Weich H.A. et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992; 359: 845–8.

11. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 1995; 147: 9–19.

12. Kety S.S. Quantitative determination of cerebral blood flow in man. Statist. Meth. Med. Research. 1948; 1: 204–17.

13. Schmidt C.F., Kety S.S. Recent studies of cerebral blood flow and cerebral metabolism in man. Transact. Assoc. Am. Physic. 1947; 60: 52–8.

14. Kety S.S. The measurement of cerebral blood flow by means of inert diffuse tracers. Keio J. Med. 1994; 43: 9–14.

15. Landau W.M., Freygang W.H. Jr, Roland L.P., Sokoloff L., Kety S.S. The local circulation of the living brain; values in the unanesthetized and anesthetized cat. In: Transactions of the American Neurological Association. 1955–1956. 80th Meeting: 125–9.

16. Veall N., Mallett B.L. The Xe133 inhalation technique for regional cerebral blood flow studies. Strahlentherapie Sonderb. 1967; 65: 166–73.

17. Veall N., Mallett B.L. Regional cerebral blood flow determination by 133-Xe inhalation and external recording: the effect of arterial recirculation. Clin. Science. 1966; 30: 353–69.

18. Portnow L.H., Vaillancourt D.E., Okun M.S. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology. 2013; 80: 952–6.

19. Herscovitch P., Markham J., Raichle M.E. Brain blood flow measured with intravenous H2 15O. Theory and error analysis. J. Nucl. Med. 1983; 24: 782–9.

20. Vallabhajosula S. Molecular imaging. Radiopharmaceuticals for PET and SPECT. NY, USA: Springer.

21. Grüner J.M., Paamand R., Ho/jgaard L., Law I. Brain perfusion CT compared with 15O-H2O-PET in healthy subjects. Eur. J. Nucl. Med. Molec. Imag. 2011; 1: 1–28.

22. Leenders K.L. PET: blood flow and oxygen consumption in brain tumors. Review. J. Neurooncol. 1994; 22: 269–73.

23. Grüner J.M., Paamand R., Kostelja￾netz M., Broholm H., Ho/jgaard L., Law I. Brain perfusion CT compared with 15O-H2O PET in patients with primary brain tumors. Eur. J. Nucl. Med. Molec. Imag. 2012; 39: 1691–701.

24. Covarrubias D.J., Rosen B.R., Lev M.H. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004; 9: 528–37.

25. Boxerman J.L., Hamberg L.M., Rosen B.R., Weisskoff R.M. MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic Reson. Med. 1995; 34: 555–66.

26. Sugahara T., Korogi Y., Kochi M., Ikushima I., Hirai T., Okuda T. et al. Correlation of MR imagingdetermined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am. J. Roengenol. 1998; 171: 1479–86.

27. Sugahara T., Korogi Y., Kochi M., Ushio Y., Takahashi M. Perfusionsensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. Am. J. Neuroradiol. 2001; 22: 1306–15.

28. Leenders K.L., Beaney R.P., Bro￾oks D.J., Lammertsma A.A., Heather J.D., McKenzie C.G. Dexamethasone treatment of brain tumor patients: effects on regional cerebral blood flow, blood volume, and oxygen utilization. Neurology. 1985; 35: 1610–6.

29. Phelps M.E., Hoffman E.J., Cole￾man R.E., Welch M.J., Raichle M.E., Weiss E.S. et al. Tomographic images of blood pool and perfusion in brain and heart. J. Nucl. Med. 1976; 17: 603–12.

30. Xiangsong Z., Changhong L., Weian C., Dong Z. PET imaging of cerebral astrocitoma with 13N-ammonia. J. Neurooncol. 2006; 78: 145–51.

31. Xiangsong Z., Weian C. Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with 13N-NH3 PET. J. Neurooncol. 2007; 82: 305–11.

32. Pilkington G.J., Lantos P.L. The role of glutamine synthetase in the diagnosis of cerebral tumours. Neuropathol. Applied Neurobiol. 1982; 8: 227–36.

33. Akimoto J., Itoh H., Miwa T., Ikeda K. Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Research Develop. Brain Research. 1993; 72: 9–14.

34. Spaeth N., Wyss M.T., Weber B., Scheidegger S., Lutz A., Verwey J. et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J. Nucl. Med. 2004; 45: 1931–8.

35. Provenzale J.M., Mukundan S., Dewhirst M. The role of bloodbrain barrier permeability in brain tumor imaging and therapeutics. Am. J. Roengenol. 2005; 185: 763–7.

36. Pinzón-Daza M.L., Campia I., Kopecka J., Garzón R., Ghigo D., Riganti C. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Current Drug Metabolism. 2013; 14: 625–40.

37. Laamertsma Brooks D.J., Beaney R.P., Laamertsma A.A., Leenders K.L., Horlock P.L., Kensett M.J. et al. Quantative measurement of bloodbrain barrier permeability using rubidium-82 and positron emission tomography. J. Cerebr. Blood Flow Metabol. 1984; 4: 535–45.

38. Yen C-K., Yano Y., Budinger T.F., Friedland R.P., Derenzo S.E., Huesman R.H., O`Brien H.A. Brain tumor evaluation using Rb-82 and positron emission tomography. J. Nucl. Med. 1982; 23: 532–7.

39. Lammertsma A.A., Brooks D.J., Frackowiak R.S.J., Heather J.D., Jones T. A method to quantitate the fractional extraction of rubidium 82 across the blood-brain barrier using positron emission tomography. J. Cerebr. Blood Flow Metabol. 1984; 4: 523–34.

40. Studer R.K., Welch D.M., Siegel B.A. Transient alteration of the bloodbrain barrier: effect of hypertonic solutions administered via carotid artery injection. Exp. Neurol. 1974; 44: 266–73.

41. Thompson A.M. Hyperosmotic effects on brain uptake of non-electrolytes. In: Crone C., Lassen N.A. (eds). Capillary Permeability. Copenhagen: Munksgaard; 1969: 459–68.

42. Гранов А.М., Тютин Л.А., Костеников Н.А., Рыжкова Д.В., Жуйков Б.Л., Мостова М.И. и др. Первый опыт использования 82Sr/82Rb генератора в онкологической клинике. Лучевая диагностика и терапия. 2012; 4: 31–9. Granov A.M., Tyutin L.A., Kostenikov N.A., Ryzhkova D.V., Zhuy￾kov B.L., Mostova M.I. et al. First experience of 82Sr/82Rb generator using in oncology pratice. Luche￾vaya diagnostika i terapiya. 2012; 4: 31–9 (in Russian).


Review

For citations:


Stanzhevskiy A.A., Panfilenko A.F., Tyutin L.A., Ilyushchenko Yu.R. ROLE OF POSITRON EMISSION TOMOGRAPHY IN THE HEMODYNAMIC EVALUATION OF BRAIN TUMORS. Journal of radiology and nuclear medicine. 2014;(6):53-61. (In Russ.) https://doi.org/10.20862/0042-4676-2014-0-6-53-61

Views: 635


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)