Calculated Parameters for Assessing the Interaction of Fluids in the Central Nervous System According to Radiation Introscopy (Part I)
https://doi.org/10.20862/0042-4676-2020-101-4-244-252
Abstract
Keywords
About the Authors
O. B. BogomyakovaRussian Federation
Cand. Med. Sc., Junior Researcher, Laboratory “MRI Technologies”
ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation
Yu. A. Stankevich
Russian Federation
Cand. Med. Sc., Junior Researcher, Laboratory “MRI Technologies”
ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation
K. I. Kolpakov
Russian Federation
Student
ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation
S. E. Semenov
Russian Federation
Dr. Med. Sc., Leading Researcher, Laboratory of X-ray and Computed Tomographic Diagnostics
Sosnovy bul’var, 6, Kemerovo, 650002, Russian Federation
E. A. Yurkevich
Russian Federation
Junior Researcher, Laboratory of Ultrasound and Physiologic Diagnostics
Sosnovy bul’var, 6, Kemerovo, 650002, Russian Federation
A. P. Chupakhin
Russian Federation
Dr. Phys.-Math. Sc., Professor, Head of Laboratory of Differential Equations; Lavrentyev Institute of Hydrodynamics,
ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation
Lavrentyevskiy bul’var, 15, Novosibirsk, 630090, Russian Federation
A. A. Tulupov
Russian Federation
Dr. Med. Sc., Professor of the Russian Academy of Sciences, Chief Researcher, Head of the Laboratory “MRI
Technologies”; Deputy Director
ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation
ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation
O. Yu. Borodin
Russian Federation
Cand. Med. Sc., Senior Researcher, Department of X-Ray and Tomographic Diagnostic Methods
ul. Kievskaya, 111a, Tomsk, 634012, Russian Federation
References
1. Facchini L, Bellin A, Toro EF. Modeling loss of microvascular wall homeostasis during glycocalyx deterioration and hypertension that impacts plasma filtration and solute exchange. Curr Neurovasc Res. 2016; 13(2): 147–55. doi: 10.2174/1567202613666160223121415
2. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Phys Rev. 2013; 93(4): 1847–92. doi: 10.1152/physrev.00004.2013
3. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa E, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008; 5: 10–42. doi: 10.1186/1743-8454-5-10
4. Kim DJ, Czosnyka Z, Kasprowicz M, Czosnyka M. Continuous monitoring of the Monro–Kellie doctrine: is it possible? J Neur. 2012; 7(29): 1354–63. doi: 10.1089/neu.2011.2018
5. Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, et al. Changes in intracranial venous blood flow and pulsatility in Alzheimer’s disease: a 4D flow MRI study. J Cereb Blood Flow Metab. 2017; 37(6): 2149–58. doi: 10.1177/0271678X16661340
6. El Sankari S, Baledent O, Pesch V, Sindic C, Broqueville Q, Duprez T. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab. 2013; 33(9): 1314–21. doi: 10.1038/jcbfm.2013.95
7. El Sankari S, Gondry-Jouet C, Fichten A, Godefroy O, Serot JM, Deramond H, et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011; 8: 12. doi: 10.1186/2045-8118-8-12
8. Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, Eklund JM. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2016; 135(5): 576–84. doi: 10.1111/ane.12636
9. Capel C, Baroncini M, Gondry-Jouet C, Bouzerar R, Czosnyka M, Czosnyka Z, Balédent O. Cerebrospinal fluid and cerebral blood flows in idiopathic intracranial hypertension. Acta Neurochir Suppl. 2018; 126: 237–41. doi: 10.1007/978-3-319-65798-1-48
10. Harris S, Reyhan T, Ramli Y, Prihartono J, Kurniawan M. Middle cerebral artery pulsatility index as predictor of cognitive impairment in hypertensive patients. Front Neurol. 2018; 9: 538. doi: 10.3389/fneur.2018.00538
11. Shi Y, Thrippleton MJ, Marshall I, Wardlaw LM. Intracranial pulsatility in patients with cerebral small vessel disease: a systematic review. Clin Sci (Lond). 2018; 132(1): 157–71. doi: 10.1042/CS20171280
12. Sundström P, Wåhlin A, Ambarki K, Birgander R, Eklund A, Malm J. Venous and cerebrospinal fluid flow in multiple sclerosis: a case-control study. Ann Neurol. 2010; 68(2): 255–9. doi: 10.1002/ana.22132
13. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance imaging. The Monro–Kellie doctrine revisited. Neuroradiology. 1992; 34(5): 370–80. doi: 10.1007/BF00596493
14. Appelman AP, van de Graaf Y, Vincken KL, Tiehuis AM, Witkamp TD, Mali WP, Geerlings MI. Total cerebral blood flow, white matter lesions and brain atrophy: the SMART-MR study. J Cereb Blood Flow Metab. 2008; 28(3): 633–9. doi: 10.1038/sj.jcbfm.9600563
15. Hawkes RA, Patterson AJ, Priest AN, Harrison G, Hunter S, Pinney J, et al. Uterine artery pulsatility and resistivity indices in pregnancy: comparison of MRI and Doppler US. Placenta. 2016; 43: 35–40. doi: 10.1016/j.placenta.2016.04.002
16. Stoquart-ElSankari S, Balédent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab. 2007; 27(9): 1563–72. doi: 10.1038/sj.jcbfm.9600462
17. Stoquart-ElSankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009; 29(6): 1208–15. doi: 10.1038/jcbfm.2009.29
18. Capel C, Makki M, Gondry-Jouet C, Bouzerar R, Courtois V, Krejpowicz B, Balédent O. Insights into cerebrospinal fluid and cerebral blood flows in infants and young children. J Child Neurol. 2014; 29(12): 1608–15. doi: 10.1177/0883073813511854
19. Chelysheva LV, Kuimov AD. Cardiocerebral interactions in patients with arterial hypertension of various stages. Siberian Medical Review. 2012; 6: 58–62 (in Russian).
20. Gorbunova EV, Shumilina MV. Defect of interatrial septum and cephalgic syndrome. Clinical Physiology of Circulation. 2009; 2: 24–30 (in Russian).
21. Zhuchkova E.A., Semenov S.E. Headache and ultrasound index of the arteriovenous ratio are additional significant factors in the diagnosis of stroke. Clinical Physiology of Circulation. 2015; 2: 30–5 (in Russian).
22. Semenov SE, Shumilina MV, Zhuchkova EA, Semenov AS. Diagnosis of cerebral venous ischemia. Clinical Physiology of Circulation. 2015; 2: 5–16 (in Russian).
23. Dicheskul ML, Zhestovskaya SI, Kulikov VP. Ultrasonic evaluation of blood flow indicators in the vertebral veins in dystonic and congestive-hypoxic variants of venous discirculation. Siberian Medical Journal. 2013; 28(4): 89–93 (in Russian).
24. Semenov SE, Kovalenko AV, Moldavskaya IV, Hromov AA, Zhuchkova EA, Hromova AN, et al. Diagnosis and the role of cerebral venous plethora in the course and outcome of non-hemorrhagic stroke. Complex Issues of Cardiovascular Diseases. 2014; 3: 108–17 (in Russian). doi: 10.17802/2306-1278-2014-3-108-117
25. Oner S, Kahraman AS, Özcan C, Oner Z. Cerebrospinal fluid dynamics in patients with multiple sclerosis: the role of phasecontrast MRI in the differential diagnosis of active and chronic disease. Korean J Radiol. 2018; 19(1): 72–8. doi: 10.3348/kjr.2018.19.1.72
26. Balédent O, Gondry-Jouet C, Meyer ME, De Marco G, Le Gars D, Henry-Feugeas MC, Idy-Peretti I. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004; 39(1): 45–55. doi: 10.1097/01.rli.0000100892.87214.49
27. Oner Z, Kahraman AS, Kose E, Oner S, Kavaklі A, Cay M, Ozbag D. Quantitative evaluation of normal aqueductal cerebrospinal fluid flow using phase-contrast cine MRI according to age and sex. Anat Rec (Hoboken). 2017; 300(3): 549–55. doi: 10.1002/ar.23514
28. Bogomyakova O, Stankevich Yu, Mesropyan N, Shraybman L, Tulupov A. Evaluation of the flow of cerebrospinal fluid as well as gender and age characteristics in patients with communicating hydrocephalus, using phase-contrast magnetic resonance imaging. Acta Neurologica Belgica. 2016; 116(4): 495–501. doi: 10.1007/s13760-016-0608-3
29. Tulupov AA, Bogomyakova OB, Savelyeva LA, Prygova Yu A. Quantification of flow of cerebrospinal fluid on basal level of brain by a phase-contrast MRI technique. Applied Magnetic Resonance. 2011; 41(2): 543–50. doi: 10.1007/s00723-011-0291-8
30. Yin LK, Zheng JJ, Zhao L, Hao XZ, Zhang X, Tian JQ, et al. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2017; 136(5): 434–9. doi: 10.1111/ane.12750
31. Greitz D, Hannerz J, Rähn T, Bolander H, Ericsson A. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol. 1994; 35(3): 204–11. doi: 10.1177/028418519403500302
Review
For citations:
Bogomyakova O.B., Stankevich Yu.A., Kolpakov K.I., Semenov S.E., Yurkevich E.A., Chupakhin A.P., Tulupov A.A., Borodin O.Yu. Calculated Parameters for Assessing the Interaction of Fluids in the Central Nervous System According to Radiation Introscopy (Part I). Journal of radiology and nuclear medicine. 2020;101(4):244-252. (In Russ.) https://doi.org/10.20862/0042-4676-2020-101-4-244-252