Preview

Journal of radiology and nuclear medicine

Advanced search

Calculated Parameters for Assessing the Interaction of Fluids in the Central Nervous System According to Radiation Introscopy (Part I)

https://doi.org/10.20862/0042-4676-2020-101-4-244-252

Abstract

The aim of this literature review is to consider the range of different integral characteristics and indices, by which it can be possible to evaluate impaired hemodynamics and cerebrospinal fluid dynamics in the central nervous system according to radiation introscopy, including ultrasound and phase-contrast magnetic resonance imaging. Consideration is given to various volume-velocity and temporal parameters and the possibility of using the described characteristics to study joint blood and cerebrospinal fluid flows. Emphasis is laid on the analysis of the information provided by each of the indices and by the possibility of its clinical application. This expanded study of the interaction of fluids in the central nervous system will be able to give a better insight into the mechanisms involved in maintaining homeostasis in the brain.

About the Authors

O. B. Bogomyakova
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Cand. Med. Sc., Junior Researcher, Laboratory “MRI Technologies”

ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation



Yu. A. Stankevich
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Cand. Med. Sc., Junior Researcher, Laboratory “MRI Technologies”

ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation



K. I. Kolpakov
Novosibirsk National Research State University
Russian Federation
Student

ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation


S. E. Semenov
Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Dr. Med. Sc., Leading Researcher, Laboratory of X-ray and Computed Tomographic Diagnostics

Sosnovy bul’var, 6, Kemerovo, 650002, Russian Federation



E. A. Yurkevich
Scientific Research Institute for Complex Issues of Cardiovascular Diseases,
Russian Federation

Junior Researcher, Laboratory of Ultrasound and Physiologic Diagnostics

Sosnovy bul’var, 6, Kemerovo, 650002, Russian Federation



A. P. Chupakhin
Novosibirsk National Research State University; Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Dr. Phys.-Math. Sc., Professor, Head of Laboratory of Differential Equations; Lavrentyev Institute of Hydrodynamics,

ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation

Lavrentyevskiy bul’var, 15, Novosibirsk, 630090, Russian Federation



A. A. Tulupov
International Tomography Center, Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University
Russian Federation

Dr. Med. Sc., Professor of the Russian Academy of Sciences, Chief Researcher, Head of the Laboratory “MRI
Technologies”; Deputy Director

ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation

ul. Pirogova, 2, Novosibirsk, 630090, Russian Federation



O. Yu. Borodin
Scientific Research Institute of Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Cand. Med. Sc., Senior Researcher, Department of X-Ray and Tomographic Diagnostic Methods

ul. Kievskaya, 111a, Tomsk, 634012, Russian Federation


References

1. Facchini L, Bellin A, Toro EF. Modeling loss of microvascular wall homeostasis during glycocalyx deterioration and hypertension that impacts plasma filtration and solute exchange. Curr Neurovasc Res. 2016; 13(2): 147–55. doi: 10.2174/1567202613666160223121415

2. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Phys Rev. 2013; 93(4): 1847–92. doi: 10.1152/physrev.00004.2013

3. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa E, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008; 5: 10–42. doi: 10.1186/1743-8454-5-10

4. Kim DJ, Czosnyka Z, Kasprowicz M, Czosnyka M. Continuous monitoring of the Monro–Kellie doctrine: is it possible? J Neur. 2012; 7(29): 1354–63. doi: 10.1089/neu.2011.2018

5. Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, et al. Changes in intracranial venous blood flow and pulsatility in Alzheimer’s disease: a 4D flow MRI study. J Cereb Blood Flow Metab. 2017; 37(6): 2149–58. doi: 10.1177/0271678X16661340

6. El Sankari S, Baledent O, Pesch V, Sindic C, Broqueville Q, Duprez T. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab. 2013; 33(9): 1314–21. doi: 10.1038/jcbfm.2013.95

7. El Sankari S, Gondry-Jouet C, Fichten A, Godefroy O, Serot JM, Deramond H, et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011; 8: 12. doi: 10.1186/2045-8118-8-12

8. Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, Eklund JM. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2016; 135(5): 576–84. doi: 10.1111/ane.12636

9. Capel C, Baroncini M, Gondry-Jouet C, Bouzerar R, Czosnyka M, Czosnyka Z, Balédent O. Cerebrospinal fluid and cerebral blood flows in idiopathic intracranial hypertension. Acta Neurochir Suppl. 2018; 126: 237–41. doi: 10.1007/978-3-319-65798-1-48

10. Harris S, Reyhan T, Ramli Y, Prihartono J, Kurniawan M. Middle cerebral artery pulsatility index as predictor of cognitive impairment in hypertensive patients. Front Neurol. 2018; 9: 538. doi: 10.3389/fneur.2018.00538

11. Shi Y, Thrippleton MJ, Marshall I, Wardlaw LM. Intracranial pulsatility in patients with cerebral small vessel disease: a systematic review. Clin Sci (Lond). 2018; 132(1): 157–71. doi: 10.1042/CS20171280

12. Sundström P, Wåhlin A, Ambarki K, Birgander R, Eklund A, Malm J. Venous and cerebrospinal fluid flow in multiple sclerosis: a case-control study. Ann Neurol. 2010; 68(2): 255–9. doi: 10.1002/ana.22132

13. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance imaging. The Monro–Kellie doctrine revisited. Neuroradiology. 1992; 34(5): 370–80. doi: 10.1007/BF00596493

14. Appelman AP, van de Graaf Y, Vincken KL, Tiehuis AM, Witkamp TD, Mali WP, Geerlings MI. Total cerebral blood flow, white matter lesions and brain atrophy: the SMART-MR study. J Cereb Blood Flow Metab. 2008; 28(3): 633–9. doi: 10.1038/sj.jcbfm.9600563

15. Hawkes RA, Patterson AJ, Priest AN, Harrison G, Hunter S, Pinney J, et al. Uterine artery pulsatility and resistivity indices in pregnancy: comparison of MRI and Doppler US. Placenta. 2016; 43: 35–40. doi: 10.1016/j.placenta.2016.04.002

16. Stoquart-ElSankari S, Balédent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab. 2007; 27(9): 1563–72. doi: 10.1038/sj.jcbfm.9600462

17. Stoquart-ElSankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009; 29(6): 1208–15. doi: 10.1038/jcbfm.2009.29

18. Capel C, Makki M, Gondry-Jouet C, Bouzerar R, Courtois V, Krejpowicz B, Balédent O. Insights into cerebrospinal fluid and cerebral blood flows in infants and young children. J Child Neurol. 2014; 29(12): 1608–15. doi: 10.1177/0883073813511854

19. Chelysheva LV, Kuimov AD. Cardiocerebral interactions in patients with arterial hypertension of various stages. Siberian Medical Review. 2012; 6: 58–62 (in Russian).

20. Gorbunova EV, Shumilina MV. Defect of interatrial septum and cephalgic syndrome. Clinical Physiology of Circulation. 2009; 2: 24–30 (in Russian).

21. Zhuchkova E.A., Semenov S.E. Headache and ultrasound index of the arteriovenous ratio are additional significant factors in the diagnosis of stroke. Clinical Physiology of Circulation. 2015; 2: 30–5 (in Russian).

22. Semenov SE, Shumilina MV, Zhuchkova EA, Semenov AS. Diagnosis of cerebral venous ischemia. Clinical Physiology of Circulation. 2015; 2: 5–16 (in Russian).

23. Dicheskul ML, Zhestovskaya SI, Kulikov VP. Ultrasonic evaluation of blood flow indicators in the vertebral veins in dystonic and congestive-hypoxic variants of venous discirculation. Siberian Medical Journal. 2013; 28(4): 89–93 (in Russian).

24. Semenov SE, Kovalenko AV, Moldavskaya IV, Hromov AA, Zhuchkova EA, Hromova AN, et al. Diagnosis and the role of cerebral venous plethora in the course and outcome of non-hemorrhagic stroke. Complex Issues of Cardiovascular Diseases. 2014; 3: 108–17 (in Russian). doi: 10.17802/2306-1278-2014-3-108-117

25. Oner S, Kahraman AS, Özcan C, Oner Z. Cerebrospinal fluid dynamics in patients with multiple sclerosis: the role of phasecontrast MRI in the differential diagnosis of active and chronic disease. Korean J Radiol. 2018; 19(1): 72–8. doi: 10.3348/kjr.2018.19.1.72

26. Balédent O, Gondry-Jouet C, Meyer ME, De Marco G, Le Gars D, Henry-Feugeas MC, Idy-Peretti I. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004; 39(1): 45–55. doi: 10.1097/01.rli.0000100892.87214.49

27. Oner Z, Kahraman AS, Kose E, Oner S, Kavaklі A, Cay M, Ozbag D. Quantitative evaluation of normal aqueductal cerebrospinal fluid flow using phase-contrast cine MRI according to age and sex. Anat Rec (Hoboken). 2017; 300(3): 549–55. doi: 10.1002/ar.23514

28. Bogomyakova O, Stankevich Yu, Mesropyan N, Shraybman L, Tulupov A. Evaluation of the flow of cerebrospinal fluid as well as gender and age characteristics in patients with communicating hydrocephalus, using phase-contrast magnetic resonance imaging. Acta Neurologica Belgica. 2016; 116(4): 495–501. doi: 10.1007/s13760-016-0608-3

29. Tulupov AA, Bogomyakova OB, Savelyeva LA, Prygova Yu A. Quantification of flow of cerebrospinal fluid on basal level of brain by a phase-contrast MRI technique. Applied Magnetic Resonance. 2011; 41(2): 543–50. doi: 10.1007/s00723-011-0291-8

30. Yin LK, Zheng JJ, Zhao L, Hao XZ, Zhang X, Tian JQ, et al. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2017; 136(5): 434–9. doi: 10.1111/ane.12750

31. Greitz D, Hannerz J, Rähn T, Bolander H, Ericsson A. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol. 1994; 35(3): 204–11. doi: 10.1177/028418519403500302


Review

For citations:


Bogomyakova O.B., Stankevich Yu.A., Kolpakov K.I., Semenov S.E., Yurkevich E.A., Chupakhin A.P., Tulupov A.A., Borodin O.Yu. Calculated Parameters for Assessing the Interaction of Fluids in the Central Nervous System According to Radiation Introscopy (Part I). Journal of radiology and nuclear medicine. 2020;101(4):244-252. (In Russ.) https://doi.org/10.20862/0042-4676-2020-101-4-244-252

Views: 1010


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)