Preview

Вестник рентгенологии и радиологии

Расширенный поиск

Роль методов радионуклидной диагностики в нейроонкологии

https://doi.org/10.20862/0042-4676-2020-101-4-221-234

Полный текст:

Аннотация

В диагностике опухолей головного мозга в последние годы все большее значение приобретает позитронная эмиссионная томография (ПЭТ) с радиофармпрепаратами класса аминокислот, и во многих диагностических центрах она уже стала дополнительным методом обследования наряду с магнитнорезонансной томографией (МРТ). Для ПЭТ-диагностики  менингиом наиболее перспективными представляются маркеры соматостатиновых  рецепторов. ПЭТ обеспечивает важными дополнительными сведениями при диагностике изменений головного мозга неясного генеза и предоставляет более точную информацию о границах опухоли, что необходимо при проведении биопсии, нейрохирургического вмешательства и лучевой терапии. Кроме того, ПЭТ с мечеными аминокислотами помогает оценить прогноз заболевания, дифференцировать продолженный рост опухоли от неспецифического лечебного патоморфоза головного мозга, a также оценить эффективность проводимого лечения в более ранние сроки, чем это возможно при МРТ.

Об авторах

Т. Ю. Скворцова
ФГБУН «Институт мозга человека им. Н.П. Бехтеревой» Российской академии наук
Россия
к. м. н., вед. науч. сотр. лаборатории нейровизуализации, радиолог

ул. Академика Павлова, 9, Санкт-Петербург, 197376, Российская Федерация


N. Judov
Институт нейронаук и ядерной медицины, научный центр Юлиха; Университет Ахена, отдел ядерной медицины
Германия

бакалавр

Wilhelm-Johnen-Straße, D-52425 Jülich, Germany

Templergraben 55, 52062 Aachen, Germany



M. Plotkin
Институт ядерной медицины Вивантеса
Германия
д. м. н., доктор философии, профессор, руководитель 

Landsberger Allee 49, 10249 Berlin, Germany


G. Stoffels
Институт нейронаук и ядерной медицины, научный центр Юлиха
Германия

д. м. н., 

Wilhelm-Johnen-Straße, D-52425 Jülich, Germany



N. Galldiks
Институт нейронаук и ядерной медицины, научный центр Юлиха; Кельнский университет, отдел неврологии,
Германия

д. м. н., доктор философии, профессор

Wilhelm-Johnen-Straße, D-52425 Jülich, Germany

Kerpener 62, 50937 Köln, Germany



Р. Н. Красикова
ФГБУН «Институт мозга человека им. Н.П. Бехтеревой» Российской академии наук
Россия
к. х. н., заведующая лабораторией радиохимии

ул. Академика Павлова, 9, Санкт-Петербург, 197376, Российская Федерация


K. J. Langen
Институт нейронаук и ядерной медицины, научный центр Юлиха; Университет Ахена, отдел ядерной медицины; Исследовательское объединение Юлих–Ахен (ИОЮА), секция «Мозг»
Германия

д. м. н., доктор философии, профессор

Wilhelm-Johnen-Straße, D-52425 Jülich, Germany

Templergraben 55, 52062 Aachen, Germany

Wilhelm-Johnen-Straße, 52425 Jülich, Germany



Список литературы

1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014; 16 (Suppl 4): PMC4193675. doi: 10.1093/neuonc/nou223

2. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Pep. 2012; 14: 48–54. doi: 10.1007/s11912-011-0203-y

3. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014; 15(9): 395–403. doi: 10.1016/S1470-2045(14)70011-7

4. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009; 22(6): 6338. doi: 10.1097/WCO.0b013e328332363e

5. Rapp M, Heinzel A, Galldiks N, Stoffels G, Feisberg J, Sabel M, et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med. 2013; 54(2): 229–35. doi: 10.2967/jnumed.112.109603

6. Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015; 17(9): 1293– 300. doi: 10.1093/neuonc/nov088

7. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007; 48(9): 1468–81. doi: 10.2967/jnumed.106.037689

8. Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG-PET in gliomas. J Neurooncol. 2003; 64(3): 227–37. doi: 10.1023/A: 1025665820001

9. Yoon JH, Kim JH, Kang WJ, Sohn CH, Choi SH, Yun TJ, et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol. 2014; 24(2): 380–9. doi: 10.1007/s00330-013-3019-3

10. Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Díez-Valle R, Tejada S, et al. Voxel-based analysis of dual-timepoint 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011; 52(6): 865–72. doi: 10.2967/jnumed.110.085324

11. DeWitte O, Levivier M, Violon P, Salmon I. Prognostic value positron emission tomography with [18F]-fluoro-2- deoxy-D-glucose in the low-grade glioma. J Neurosurg. 1996; 39(3): 470–6. doi: 10.1097/00006123-199609000-00007

12. Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol. 1991; 29(4): 347–55. doi: 10.1002/ana.410290403

13. Basu S, Alavi A. Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am. 2009; 19(4): 625–46. doi: 10.1016/j.nic.2009.08.012

14. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? Am J Neurorad. 1998; 19(3): 407–13.

15. Galldiks N, Langen KJ. Applications of PET imaging of neurological tumors with radiolabeled amino acids. Q J Nucl Med Mol Imaging. 2015; 59(1): 70–82.

16. Fedorova O, Kuznetsova O, Stepanova M, Maleev V, Belokon Yu, Wester HJ, еt al. A facile direct nucleophilic synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine([18F]FET) without HPLC purification. J Rad Nucl Chem. 2014; 301: 505–12. doi: 10.1007/s10967-014-3121-2.

17. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006; 33(3): 287–94. doi: 10.1016/j.nucmedbio.2006.01.002

18. Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol. 2014; 16(3): 434–40. doi: 10.1093/neuonc/not199

19. Moulin-Romsee G, D’Hondt E, de Groot T, Goffin J, Sciot R, Mortelmans L, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007; 34(12): 2082–7. doi: 10.1007/s00259-007-0557-4

20. Cicone F, Filss CP, Minniti G, Rossi-Espagnet C, Papa A, Scaringi K, et al. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI. Eur J Nucl Med Mol Imaging. 2015; 42(6): 905–15. doi: 10.1007/s00259-015-3018-5

21. Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view – What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2015; 17(11): 1434–44. doi: 10.1093/neuonc/nov118

22. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002; 57(6): 853–6. doi: 10.1016/S0969-8043(02)00225-7

23. Krasikova R, Orlovskaya V, Stepanova M, Fedorova O. The effect of reaction media and phase transfer catalyst on the fluorination yield and enantiomeric purity in asymmetric synthesis of O-(2’-[18F]fluoroethyl)-L-tyrosine. Curr Org Chem. 2013; 17(19): 2159–63. doi: 10.2174/13852728113179990108

24. Hutterer M, Hau P, Langen KJ, Galldiks N. Pitfalls of [F18]-FET PET in the diagnostics of brain tumors. Der Nuklearmediziner. 2015; 38(4): 295–303. doi: 10.1055/s-0035-1564177

25. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of lowgrade gliomas. Neurology. 1998; 50(5): 1316–22. doi: 10.1212/wnl.50.5.1316

26. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016; 18(9): 1199–208. doi: 10.1093/neuonc/now058

27. Langen KJ, Watts C. Neuro-oncology: amino acid PET for brain tumours – ready for the clinic? Nature Reviews Neurology. 2016; 12(7): 375–6. doi: 10.1038/nrneurol.2016.80

28. Schulz S, Pauli SU, Schulz S, Händel M, Dietzmann K, Firsching R, Höllt V. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent over expression of somatostatin receptor subtype sst2A. Clin Cancer Res. 2000; 6(5): 1865–74.

29. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, Patel YC. Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer. 1998; 76(5): 620–7. doi: 10.1002/(SICI)1097-0215(19980529)76: 5<620: : AID-IJC2>3.0.CO; 2-S

30. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA]-DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001; 42(7): 1053–6.

31. Soto-Montenegro ML, Peña-Zalbidea S, Mateos-Pérez JM, Oteo M, Romero E, Morcillo MÁ, Desco M. Meningiomas: a comparative study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for molecular imaging in mice. PLoS One. 2014; 9(11): e111624. doi: 10.1371/journal.pone.0111624

32. Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012; 39(9): 1409–15. doi: 10.1007/s00259-012-2155-3

33. Rachinger W, Stoecklein VM, Terpolilli NA, Haug AR, Ertl L, Pöschl J, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015; 56(3): 347–53. doi: 10.2967/jnumed.114.149120

34. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotacticradiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]- DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006; 65(1): 222–7. doi: 10.1016/j.ijrobp.2005.12.006

35. Nyuyki F, Plotkin M, Graf R, Michel R, Steffen I, Denecke T, et al. Potential impact of(68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging. 2010; 37(2): 310–8. doi: 10.1007/s00259-009-1270-2

36. Graf R, Nyuyki F, Steffen IG, Michel R, Fahdt D, Wust P, et al. Contribution of(68)Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy. Int J Radiat Oncol Biol Phys. 2013; 85(1): 68–73. doi: 10.1016/j.ijrobp.2012.03.021

37. Graf R, Plotkin M, Steffen IG, Wurm R, Wust P, Brenner W, et al. Magnetic resonance imaging, computed tomography, and 68GaDOTATOC positron emission tomography for imaging skull base meningiomas with infracranial extension treated with stereotactic radiotherapy – a case series. Head Face Med. 2012; 8: 1. doi: 10.1186/1746-160X-8-1

38. Gehler B, Paulsen F, Oksüz MO, Hauser TK, Eschmann SM, Bares R, et al. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol. 2009; 4: 56. doi: 10.1186/1748-717X-4-56

39. Combs SE, Welzel T, Habermehl D, Rieken S, Dittmar JO, Kessel K, et al. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol. 2013; 52(3): 514–20. doi: 10.3109/0284186X.2013.762996

40. Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007; 37(1): 34–47. doi: 10.1053/j.semnuclmed.2006.08.003

41. Hellwig D, Ketter R, Romeike BF, Schaefer A, Farmakis G, Grgic A, et al. Prospective study of p-[123I]iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur J Nucl Med Mol Imaging. 2010; 37(12): 2344–53. doi: 10.1007/s00259-010-1572-4

42. Langen KJ, Pauleit D, Coenen HH. 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2002; 29(6): 625–31. doi: 10.1016/S0969-8051(02)00328-1

43. Schmidt M, Scheidhauer K, Luyken C, Voth E, Hildebrandt G, Klug N, et al. Somatostatin receptor imaging in intracranial tumors. Eur J Nucl Med. 1998; 25(7): 675–86.

44. Bohuslavizki KH, Brenner W, Braunsdorf WE, Behnke A, Tinnemeyer S, Hugo HH, et al. Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl Med Commun. 1996; 17(4): 302–10.

45. Collet S, Valable S, Constans JM, Lechapt-Zalcman E, Roussel S, Delcroix N, et al. [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. NeuroImage Clin. 2015; 8: 448–54. doi: 10.1016/j.nicl.2015.05.012

46. Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, et al. 11C-methionine(MET) and 18F-fluorothymidine(FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008; 35(11): 2009–17. doi: 10.1007/s00259-008-0847-5

47. Nowosielski M, DiFranco MD, Putzer D, Seiz M, Recheis W, Jacobs AH, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS ONE. 2014; 9(4): e95830. doi: 10.1371/journal.pone.0095830

48. Giovannini E, Lazzeri P, Milano A, Gaeta MC, Ciarmiello A. Clinical applications of choline PET/CT in brain tumors. Curr Pharm Des. 2015; 21(1): 121–7. doi: 10.2174/1381612820666140915120742

49. Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, Sasaki T. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001; 28(11): 1664–70. DOI: 10.1007/s002590100620

50. Sollini M, Sghedoni R, Erba PA, Cavuto S, Froio A, De Berti G, et al. Diagnostic performances of [18f]fluorocholine positron emission tomography in brain tumors. Q J Nucl Med Mol Imaging. 2015; 62(2): 209–19. doi: 10.23736/S1824-4785.17.02807-2

51. Kobayashi H, Hirata K, Yamaguchi S, Terasaka S, Shiga T, Houkin K. Usefulness of FMISO-PET for glioma analysis. Neurol Med Chir. 2013; 53(11): 773–8. doi: 10.2176/nmc.ra2013-0256

52. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. [18F]-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malig nant gliomas. Eur J Nucl Med Mol Imaging. 2012; 39(5): 760–70. doi: 10.1007/s00259-011-2037-0

53. Winkeler A, Boisgard R, Awde AR, Dubois A, Thézé B, Zheng J, et al. The translocator protein ligand [18F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging. 2012; 39(5): 811–23. doi: 10.1007%2Fs00259- 011-2041-4

54. Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD, et al. TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med. 2015; 56(9): 1386–90. doi: 10.2967/jnumed.115.158998

55. Smits A, Baumert BG. The clinical value of PET with amino acid tracers for gliomas WHO grade II. Int J Mol Imaging. 2011; 2011: 372509. doi: 10.1155/2011/372509

56. Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging. 2008; 35(1): 65–71. doi: 10.1007/s00259-007-0531-1

57. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of(18)F-FET and(18)F-FDG PET in brain tumors. Nucl Med Biol. 2009; 36(7): 779–87. doi: 10.1016/j.nucmedbio.2009.05.005

58. Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, et al. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg. 2004; 101(3): 476–83. doi: 10.3171/jns.2004.101.3.0476

59. Plotkin M, Blechschmidt C, Auf G, Nyuyki F, Geworski L, Denecke T, et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol. 2010; 20: 2496–502. doi: 10.1007/s00330-010-1819-2

60. Galldiks N, Stoffels G, Ruge MI, Rapp M, Sabel M, Reifenberger G, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013; 54(12): 2046–54. doi: 10.2967/jnumed.113.123836

61. Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015; 56(1): 9–15. doi: 10.2967/jnumed.114.144675

62. Unterrainer M, Schweisthal F, Suchorska B, Wenter V, SchmidTannwald C, Fendler WP, et al. Serial 18F-FET P imaging of primarily 18F-FET-negative glioma – does it make sense? J Nucl Med. 2016; 57(8): 1177–82. doi: 10.2967/jnumed.115.171033

63. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004; 10(21): 7163–70. doi: 10.1158/1078-0432.CCR-04-0262

64. Lopez WO, Cordeiro JG, Albicker U, Doostkam S, Nikkhah G, Kirch RD, et al. Correlation of(18)F-fluoroethyl tyrosine positronemission tomography uptake values and histomorphological findings by stereotactic serial biopsy in newly diagnosed brain tumors using a refined software tool. Onco Targets Ther. 2015; 8: 3803–15. doi: 10.2147/OTT.S87126

65. Mosskin M, Ericson K, Hindmarsh T, von Holst H, Collins VP, Bergström M, et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol. 1989; 30(3): 225–32.

66. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L- tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005; 128(3): 678–87. doi: 10.1093/brain/awh399

67. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009; 64(3): 471–81. doi: 10.1227/01.NEU.0000338949.94496.85

68. Buchmann N, Klasner B, Gempt J, Bauer JS, Pyka T, Delbridge C, et al. (18)F-fluoroethyl-l-thyrosine positron emission tomography to delineate tumor residuals after glioblastoma resection: a comparison with standard postoperative magnetic resonance imaging. World Neurosurg. 2016; 89: 420–6. doi: 10.1016/j.wneu.2016.02.032

69. Piroth MD, Holy R, Pinkawa M, Stoffels G, Kaiser HJ, Galldiks N, et al. Prognostic impact of postoperative, pre-irradiation(18)Ffluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol. 2011; 99(2): 218–24. doi: 10.1016/j.radonc.2011.03.006

70. Suchorska B, Jansen NL, Linn J, Kretzschmar H, Janssen H, Eigenbrod S, et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015; 84(7): 710–9. doi: 10.1212/WNL.0000000000001262

71. Grosu AL, Weber WA. PET for radiation treatment planning of brain tumours. Radiother Oncol. 2010; 96(3): 325–7. doi: 10.1016/j.radonc.2010.08.001

72. Rosenschold PM, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L, Engelholm S. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of highgrade glioma. Neuro Oncol. 2015; 17(5): 757–63. doi: 10.1093/neuonc/nou316

73. Piroth MD, Pinkawa M, Holy R, Klotz J, Schaar S, Stoffels G, et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol. 2012; 188(4): 334–9. doi: 10.1007/s00066-011-0060-5

74. Levivier M, Massager N, Wikler D, Lorenzoni J, Ruiz S, Devriendt D, et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med. 2004; 45(7): 1146–54.

75. Rickhey M, Koelbl O, Eilles C, Bogner L. A biologically adapted dose-escalation approach, demonstrated for 18F-FET- PET in brain tumors. Strahlenther Onkol. 2008; 184(10): 536–42. doi: 10.1007/s00066-008-1883-6

76. Rieken S, Habermehl D, Giesel FL, Hoffmann C, Burger U, Rief H, et al. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol. 2013; 109(3): 487–92. doi: 10.1016/j.radonc.2013.06.043

77. Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, et al. [(18)F]Fluoroethyltyrosine-positron emission tomographyguided radiotherapy for high-grade glioma. Radiat Oncol. 2008; 3: 44. doi: 10.1186/1748-717X-3-44

78. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016; 18(3): 426–34. doi: 10.1093/neuonc/nov148

79. Manabe O, Hattori N, Yamaguchi S, Hirata K, Kobayaxhi K, Terasaka S, et al. Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging. 2015; 42(6): 896–904. doi: 10.1007/s00259-015-2996-7

80. Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007; 34(12): 1933–42. doi: 10.1007/s00259-007-0534-y

81. Stockhammer F, Plotkin M, Amthauer H, van Landeghem FK, Woiciechowsky C. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neurooncol. 2008; 88(2): 205–10. doi: 10.1007/s11060-008-9551-3

82. Wyss MT, Hofer S, Hefti M, Bärtschi E, Uhlmann C, Treyer V, Roelcke U. Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. J Nucl Med. 2007; 48(7): 1047–52. doi: 10.2967/jnumed.106.038489

83. Скворцова Т.Ю., Захс Д.В., Гурчин А.Ф. ПЭТ с [11С]-метионином в диагностике глиальных опухолей головного мозга. Вестник РОНЦ им. Н.Н. Блохина. 2016; 27(4): 61–9.

84. Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine(F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011; 36(10): 841–7. doi: 10.1097/RLU.0b013e3182291b40

85. Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K, et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging. 2005; 32(4): 422–9. doi: 10.1007/s00259-004-1705-8

86. Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, et al. Early static(18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016; 43(6): 1105–14. doi: 10.1007/s00259-015-3276-2

87. Galldiks N, Dunkl V, Kracht LW, Vollmar S, Jacobs AH, Fink GR, et al. Volumetry of [(1)(1)C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging. 2012; 11(6): 516–27. doi: 10.2310/7290.2012.00022

88. Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging. 2016; 43(1): 133–41. doi: 10.1007/s00259-015-3140-4

89. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Långström B, et al. Positron emission tomography(11)C- methionine and survival in patients with low-grade gliomas. Cancer. 2001; 92(6): 1541–49. doi: 10.1002/1097-0142(20010915)92: 6<1541: : AID-CNCR1480>3.0.CO; 2-D

90. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of O-(2-18Ffluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007; 48: 519-27. doi: 10.2967/jnumed.106.037895

91. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012; 39(6): 1021–29. doi: 10.1007/s00259-012-2109-9

92. Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J, et al. Hot spots in dynamic(18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011; 13(3): 307–16. doi: 10.1093/neuonc/noq196

93. Thon N, Kunz M, Lemke L, Jansen NL, Eigenbrod S, Kreth S, et al. Dynamic F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int J Cancer. 2015; 136(9): 2132–45. doi: 10.1002/ijc.29259

94. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for highgrade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11): 1963–72. doi: 10.1200/JCO.2009.26.3541

95. Santra A, Kumar R, Sharma P, Bal C, Kumar A, Julka PK, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol. 2012; 81(3): 508–13. doi: 10.1016/j.ejrad.2011.01.080

96. Tripathi M, Sharma R, Varshney R, Jaimini A, Jain J, Souza MM, et al. Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med. 2012; 37(2): 158–63. doi: 10.1097/RLU.0b013e318238f51a

97. Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y, et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-Methionine PET: visual assessment versus quantitative assessment. PloS ONE. 2015; 10(7): e0132515. doi: 10.1371/journal.pone.0132515

98. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neurorad. 2013; 34(5): 944–50. doi: 10.3174/ajnr.A3324

99. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008; 49(5): 694–9. doi: 10.2967/jnumed.107.048082

100. Скворцова Т.Ю., Бродская З.Л., Гурчин А.Ф., Савинцева Ж.И. Диагностическая точность ПЭТ с [11С]метионином

101. в разграничении продолженного роста первичных церебральных опухолей и лучевых поражений головного мозга. Медицинская визуализация. 2011; 6: 80–92.

102. Salber D, Stoffels G, Pauleit D, Reifenberger G, Sabel M, Shah NJ, et al. Differential uptake of [18F]FET and [3H]L-methionine in focal cortical ischemia. Nucl Med Biol. 2006; 33(8): 1029–35. doi: 10.1016/j.nucmedbio.2006.09.004

103. Salber D, Stoffels G, Pauleit D, Oros-Peusquens AM, Shah NJ, Klauth P, et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med. 2007; 48(12): 2056–62. doi: 10.2967/jnumed.107.046615

104. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015; 42(5): 685–95. doi: 10.1007/s00259-014-2959-4

105. Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013; 40(7): 1025–35. doi: 10.1007/s00259-013-2384-0

106. Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging. 2004; 31(11): 1464–70. doi: 10.1007/s00259-004-1590-1

107. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003; 98(5): 1056–64. doi: 10.3171/jns.2003.98.5.1056

108. Galldiks N, Stoffels G, Filss CP, Piroth MD, Sabel M, Ruge MI, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med. 2012; 53(9): 1367–74. doi: 10.2967/jnumed.112.103325

109. Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AA, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med. 2014; 55(1): 30–6. doi: 10.2967/jnumed.113.121418

110. Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015; 42(1): 103–11. doi: 10.1007/s00259-014-2886-4

111. Скворцова Т.Ю., Бродская З.Л., Савинцева Ж.И., Гурчин А.Ф. Современные проблемы мониторинга лечения церебральных глиом и возможности повышения точности диагностики при ПЭТ с 11С-метионином. Лучевая диагностика и терапия. 2014; 5(2): 5–16. doi: 10.22328/2079-5343-2014-2-5-16.

112. Galldiks N, Langen K, Holy R, Pinkawa M, Stoffels G, Nolte KW, et al. Assessment of treatment response in patients with glioblastoma using [18F]Fluoroethyl-L-Tyrosine PET in comparison to MRI. J Nucl Med. 2012; 53(7): 1048–57. doi: 10.2967/jnumed.111.098590

113. Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011; 80(1): 176–84. doi: 10.1016/j.ijrobp.2010.01.055

114. Popperl G, Goldbrunner R, Gildehaus FJ, Kreth FW, Tanner P, Holtmannspötter M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging. 2005; 32(9): 1018–25. doi: 10.1007/s00259-005-1819-7

115. Pöpperl G, Götz C, Rachinger W, Schnell O, Gildehaus FJ, Tonn JC, et al. Serial O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging. 2006; 33(7): 792–800. doi: 10.1007/s00259-005-0053-7

116. Galldiks N, Kracht LW, Burghaus L, Ullrich RT, Backes H, Brunn A, et al. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging. 2010; 9(1): 40–6. doi: 10.2310/7290.2010.00002

117. Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl.Med Mol Imaging. 2006; 33(5): 516–24. doi: 10.1007/s00259-005-0002-5

118. Galldiks N, Filss CP, Goldbrunner R, Langen KJ. Discrepant MR and [(18)F]Fluoroethyl-L-Tyrosine PET imaging findings in a patient with bevacizumab failure. Case Rep Oncol. 2012; 5(3): 490–4. doi: 10.1159/000342480

119. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011; 52(6): 856–64. doi: 10.2967/jnumed.110.086645

120. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014; 20(13): 3550–59. doi: 10.1158/1078-0432.CCR-13-1440

121. Gneveckow U, Jordan A, Scholz R, Brüss V, Waldöfner N, Ricke J, et al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys. 2004; 31(6): 1444– 51. doi: 10.1118/1.1748629

122. Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feussner A, Denecke T, et al. 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastomas. Int J Hyperthermia. 2006; 22(4): 319–25. doi: 10.1080/02656730600734128

123. Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol. 2007; 6(8): 711–24. doi: 10.1016/S1474-4422(07)70192-8

124. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010; 9(9): 906–20. doi: 10.1016/S1474-4422(10)70181-2

125. Pauleit D, Langen KJ, Floeth F, Hautzel H, Riemenschneider MJ, Reifenberger G, et al. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas. J Magn Reson Imaging. 2004; 20(5): 758–64. doi: 10.1002/jmri.20177

126. Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med. 2008; 49(5): 721–9. doi: 10.2967/jnumed.107.049213


Для цитирования:


Скворцова Т.Ю., Judov N., Plotkin M., Stoffels G., Galldiks N., Красикова Р.Н., Langen K.J. Роль методов радионуклидной диагностики в нейроонкологии. Вестник рентгенологии и радиологии. 2020;101(4):221-234. https://doi.org/10.20862/0042-4676-2020-101-4-221-234

For citation:


Skvortsova T.Yu., Judov N., Plotkin M., Stoffels G., Galldiks N., Krasikova R.N., Langen K.J. The Role of Radionuclide Diagnostic Methods in Neuro-Oncology. Journal of radiology and nuclear medicine. 2020;101(4):221-234. (In Russ.) https://doi.org/10.20862/0042-4676-2020-101-4-221-234

Просмотров: 51


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)