Radiobiological Evaluation of Dosimetric Plans for Stereotactic Radiotherapy for Prostate Cancer According to Fractionation Regimen
https://doi.org/10.20862/0042-4676-2019-100-5-263-269
Abstract
Objective. To determine the most effective irradiation regimen (total dose and dose per fraction) for hypofractionated treatment for prostate carcinomas according the TCP/NTCP radiobiological criteria.
Material and methods. Using the tomographic information of five patients with low-risk prostate adenocarcinoma as an example, the authors devised dosimetric radiation therapy plans using the volumetric modulated arc therapy (VMAT) procedure. They considered the range of total doses of 33.5 to 38 Gy administered in 4 and 5 fractions. Based on the equivalent uniform dose concept proposed by A. Niemierko and on the computed differential dose volume histograms, the investigators modeled local tumor control probability (TCP) values, by taking into account the uncertainties of main radiobiological parameters, and estimated normal tissue complication probabilities (NTCP) for the anterior rectal wall as the organ most at risk of irradiation. An effective dosimetric plan was selected according to the UTCP criterion and the probability of complication-free tumor control, i.e. TCP (1 – NTCP).
Results. The results of modeling the UTCP criterion show that with a higher total dose, the TCP value increases and so does the NTCP value, therefore the optimal radiation therapy plans are to irradiate with a total dose of 34 Gy over 4 fractions or with a dose of 36–37 Gy over 5 fractions. The difference between the fractionation regimens is that the UTCP value is achieved with a higher TCP value over 4 fractions and with a lower load on the rectal wall over 5 fractions.
Conclusion. The choice of a specific fractionation regimen should be determined from the calculated values of differential dose volume histograms for each patient, as well as from radiobiological criteria, such as TCP, NTCP and UTCP.
Keywords
About the Authors
E. S. SukhikhRussian Federation
Evgeniya S. Sukhikh, Cand. Phys.-Math. Sc., Associate Professor; Head of Medical Physics Division, Radiotherapy Department
prospekt Lenina, 30, Tomsk, 634050, Russian Federation; prospekt Lenina, 115, Tomsk, 634050, Russian Federation
I. N. Sheyno
Russian Federation
Igor' N. Sheyno, Cand. Phys.-Math. Sc., Head of Laboratory for Methods and Technologies Radiation Therapy
ul. Zhivopisnaya, 46, Moscow, 123182, Russian Federation
L. G. Sukhikh
Russian Federation
Leonid G. Sukhikh, Dr. Phys.-Math. Sc., Director, Research School of Physics of High-Energy Processes
prospekt Lenina, 30, Tomsk, 634050, Russian Federation
A. V. Taletskiy
Russian Federation
Aleksandr V. Taletskiy, Radiotherapist, Radiotherapy Department
prospekt Lenina, 115, Tomsk, 634050, Russian Federation
A. V. Vertinskiy
Russian Federation
Аndrey V. Vertinskiy, Medical Physicist, Medical Physics Division, Radiotherapy Department
prospekt Lenina, 115, Tomsk, 634050, Russian Federation
P. V. Izhevskiy
Russian Federation
Pavel V. Izhevskiy, Cand. Med. Sc., Associate Professor, Leading Researcher, Laboratory for Methods and Technologies of Radiation Therapy
ul. Zhivopisnaya, 46, Moscow, 123182, Russian Federation
References
1. Lo S.S., Teh B.S., Lu J.J., Schefter T.E. (Eds.). Stereotactic body radiation therapy. Berlin Heidelberg: Springer-Verlag; 2012.
2. Kharchenko V.P., Klepper L.Ya., Panyshin G.А., Sotnikova V.М., Datsenko P.V. Mathematical simulation of Hodgkin lymphoma probability dependence on total dose. Meditsinskaya Fizika (Medical Physics).2005; 4 (28): 28–35 (in Russ.).
3. Brenner D.J. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 2008; 18 (4): 234–9. DOI: 10.1016/j.semradonc.2008.04.004
4. Li X.A., Alber M., Deasy J.O., Jackson A., Jee K.W., Marks L.B. et al. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med. Phys. 2012; 39 (3): 1386–409. DOI: 10.1118/1.3685447
5. National Radiotherapy Implementation Group Report. Stereotactic Body Radiotherapy Clinical Review of the Evidence for SBRT. NHS. National Cancer Action Team. Part of the National Cancer Programme. 2010: 13–25. Available at: http://www.academia.edu/978819/National_Radiotherapy_Implementation_Group_Report_Stereotactic_Body_Radiotherapy_Clinical_Review_of_the_Evidence_for_SBRT (accessed October 14, 2019).
6. Benedict S.H., Yenice K.M., Followill D. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med. Phys. 2010; 37 (8): 4078–101. DOI: 10.1118/1.3438081
7. Chatterjee S., Willis N., Locks S.M., Mott H., Kelly C.G. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br. J. Radiol. 2011; 84 (1008): 1083–90. DOI: 10.1259/bjr/53812025
8. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med. Phys. 1997; 24 (1): 103–10. DOI: 10.1118/1.598063
9. Niemierko A.A. Unified model of tissue response to radiation. In: Proceedings of the 41th AAPM annual meeting. Nashville, Tennessee, 1999. Med. Phys. 1999: 1100.
10. Diot Q., Kavanagh B., Timmerman R., Miften M. Biologicalbased optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy. Med. Phys. 2012; 39 (1): 237–45. DOI: 10.1118/1.3668059
11. Geinitz H., Roach M. 3rd, van As N. (Eds.) Radiotherapy in prostate cancer innovative techniques and current controversies. Berlin Heidelberg: Springer-Verlag; 2015.
12. Kang S.W., Chung J.B., Kim J.S., Kim I.A., Eom K.Y., Song C. et al. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique. Radiol. Oncol. 2017; 51 (1): 112–20. DOI: 10.1515/raon-2017-0005
13. RTOG/EORTC Late Radiation Morbidity Scoring Schema. Available at: https://www.rtog.org/ResearchAssociates/AdverseEventReporting/RTOGEORTCLateRadiationMorbidityScoringSchema.aspx (accessed October 14, 2019)
14. Semenenko V.A., Reitz B., Day E., Qi X.S., Miften M., Li X.A. Evaluation of a commercial biologically based IMRT treatment planning system. Med. Phys. 2008; 35 (12): 5851–60. DOI: 10.1118/1.3013556
15. Ghandour S., Matzinger O., Pachouda M. Volumetric-modulated arc therapy planning using multicriteria optimization for localized prostate cancer. J. Appl. Clin. Med. Phys. 2015; 16 (3): 5410. DOI: 10.1120/jacmp.v16i3.5410
16. Gregoire V., Mackie T.R., De Neve W., Gospodarowicz M., Purdy J.A., van Herk M., Niemierko A. Prescribing, recording, and reporting photon beam intensity-modulated radiation therapy (IMRT). ICRU Report No. 83. J. ICRU. 2010; 10 (1): 92. DOI: 10.1093/jicru/10.1.Report83
17. Landberg T., Chavaudra J., Dobbs J., Gerard J.P., Hanks G., Horiot J.C. et al. Prescribing, recording, and reporting photon beam therapy. ICRU Report No. 62. J. ICRU. 1999; 32 (1): 52. DOI: 10.1093/jicru/os32.1.Report62
18. Dasu A., Toma-Dasu I. Prostate alpha/beta revisited – an analysis of clinical results from 14168 patients. Acta Oncologica. 2012; 51 (8): 963–74. DOI: 10.3109/0284186X.2012.719635
19. Brenner D.J., Hall E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999; 43 (5): 1095–101. DOI: 10.1016/s0360-3016(98)00438-6
20. Levegrün S., Jackson A., Zelefsky M.J., Venkatraman E.S., Skwarchuk M.W., Schlegel W. et al. Risk group dependence of dose-response for biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer. Radiother. Oncol. 2002; 63 (1): 11–26. DOI: 10.1016/s0167-8140(02)00062-2
Review
For citations:
Sukhikh E.S., Sheyno I.N., Sukhikh L.G., Taletskiy A.V., Vertinskiy A.V., Izhevskiy P.V. Radiobiological Evaluation of Dosimetric Plans for Stereotactic Radiotherapy for Prostate Cancer According to Fractionation Regimen. Journal of radiology and nuclear medicine. 2019;100(5):263-269. (In Russ.) https://doi.org/10.20862/0042-4676-2019-100-5-263-269