Using the arterial spins labeling method (ASL-perfusion) for evaluation of glioblastoma residual tissue
https://doi.org/10.20862/0042-4676-2018-99-6-305-309
Abstract
Objective. To evaluate the efficiency of ASL-perfusion as a method of estimating of hemodynamics and detection of residual tumor tissue after surgical treatment of glioblastoma.
Material and methods. 56 patients after brain tumor’s surgical resection of glioblastoma (GRADE IV). CBF values were determined in 3 different areas - in the presumed tumor tissue with maximum perfusion, in the postoperative scar tissue and in the deep white matter of the opposite hemisphere. All patients were divided into 2 groups according to CBF value.
Results. 1st group: 38 (67.9%) patients - the average CBF in suspected tumor was 137.6±35.2 (79.6-227.6) ml/100 g/min. It was 6-8 times higher than CBF in the deep white matter of the opposite hemisphere, and 5-6 times higher than in the postoperative scars.
2nd group: 18 (32.1%) patients with no pathological elevation of CBF in postoperative scar tissue. CBF there was 22.3±5.9 (13.9-37.1) ml/100 g/min. CBF in white matter in the contralateral hemisphere was similar.
There was no significant differences in CBF of scar tissue (p=0,52) and in white matter of contralateral hemisphere (p=0,96) in both groups.
Conclusion. The possibilities of ASL-perfusion are enough to estimating of hemodynamics and detection of residual tumor tissue after surgical removed glioblastoma.
About the Authors
M. S. BunakRussian Federation
Mark S. Bunak - Junior Researcher.
Ul. Shchepkina, 61/2, korpus 1, Moscow, 129110
M. V. Vishnyakova
Russian Federation
Dr. Med. Sc., Professor of the Chair of Radiology, Head of Radiology Department.
Ul. Shchepkina, 61/2, korpus 1, Moscow, 129110
G. A. Stashuk
Russian Federation
Dr. Med. Sc., Professor of the Chair of Radiology, Chief Researcher.
Ul. Shchepkina, 61/2, korpus 1, Moscow, 129110R. G. Biktimirov
Russian Federation
Cand. Med. Sc., Senior Researcher.
Ul. Shchepkina, 61/2, korpus 1, Moscow, 129110
References
1. Leon S.P., Folkerth R.D., Black P.M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996; 77: 362-72. DOI: 10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z
2. Huang A.P., Tsai J.C., Kuo L.T., Lee C.W., Lai H.S., Tsai L.K. et al. Clinical application of perfusion computed tomography in neurosurgery. J. Neurosurg. 2014; 120: 473-88. DOI: 10.3171/2013.10.JNS13103
3. Knauth M., Aras N., Wirtz C.R., Dorfler A., Engelhorn T., Sartor K. Surgically induced intracranial contrast enhancement. Potential source of diagnostic error in intraoperative MR imaging. Am. J. Neuroradiol. 1999; 20: 1547-53.
4. Petersen E.T., Mouridsen K., Golay X. The QUASAR reproducibility study, Part II: results from a multi-center arterial spin labeling test-retest study. NeuroImage. 2010; 49: 104-13. DOI: 10.1016/j.neuroimage.2009.07.068
5. Gevers S., van Osch M.J., Bokkers R.P., Kies D.A., Teeuwis-seW.M., Majoie C.B. et al. Intra-and multicenter reproducibility of pulsed, continuous and pseudocontinuous arterial spin labeling methods for measuring cerebral perfusion. J. Cereb. Blood. Flow. Metab. 2011; 31: 1706-15. DOI: 10.1038/jcbfm.2011.10
6. Cha S., Knopp E.A., Johnson G., Wetzel S.G., Litt A.W., Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002; 223: 11-29. DOI: 10.1148/radiol.2231010594
7. Paulson E.S., Schmainda K.M. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008; 249: 601-13. DOI: 10.1148/radiol.2492071659
8. Thomsen H., Steffensen E., Larsson E.M. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. ActaRadiol. 2012; 53: 95-101. DOI: 10.1258/ar.2011.110242
9. Matsumura T., Hayakawa M., Shi-mada F, Yabuki M., Dohanish S., Palkowitsch P., Yoshikawa K. Safety of gadopentetatedimeglumi-ne after 120 million administrations over 25 years of clinical use. MagnReson. Med. Sci. 2013; 12: 297-304.
10. Yang L., Krefting I., Gorovets A., Marzella L., Kaiser J., Boucher R., Rieves D. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the food and drug administration. Radiology. 2012; 265: 248-53. DOI: 10.1148/radiol.12112783
11. Carlsson A., Starck G., Ljung-berg M., Ekholm S., Forssell-Aronsson E. Accurate and sensitive measurements of magnetic susceptibility using echo planar imaging. MagnReson. Imaging. 2006; 24: 1179-85. DOI: 10.1016/j.mri.2006.07.005
12. Wong E.C. An introduction to ASL labeling techniques. J. Magn. Reson. Imaging. 2014; 40: 1-10. DOI: 10.1002/jmri.24565
13. Buxton R.B., Frank L.R., Wong E.C., Siewert B., Warach S., Edelman R.R. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. MagnReson. Med. 1998; 40: 383-96.
14. Detre J.A., Rao H., Wang D.J., Chen Y.F, Wang Z. Applications of arterial spin labeled MRI in the brain. J. MagnReson. Imaging. 2012; 35: 1026-37. DOI: 10.1002/jmri.23581
15. Sugahara T., Korogi Y., Tomi-guchi S., Shigematsu Y., Ikushi-ma I., Kira T. et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am. J. Neuroradiol. 2000; 21: 901-9.
16. Warmuth C., Gunther M., Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003; 228: 523-32. DOI: 10.1148/radiol.2282020409
17. Brandes A.A., Tosoni A., Spag-nolli F, Frezza G., Leonardi M., Calbucci F, Franceschi E. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology. Neuro Oncol. 2008; 10: 361-7. DOI: 10.1215/15228517-2008-008
18. Detre J.A., Wang J., Wang Z., Rao H. Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr. Opin. Neuro. 2009; 22: 348-55. DOI: 10.1097/WCO.0b013e32832d9505
19. Chawla S., Wang S., Wolf R.L., Woo J.H., Wang J., O'Rourke D.M. et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. Am. J. Neuroradiol. 2007; 28: 1683-9. DOI: 10.3174/ajnr.A0673
20. Lindnera Th., Ahmetib H., Lubbingb I., Hellec M., Jansena O., Synowitzb M., Ulmera S. Intraoperative resection control using arterial spin labeling - proof of concept, reproducibility of data and initial results. NeuroImage. Clinical. 2017; 15: 136-42. DOI: 10.1016/j.nicl.2017.04.021
Review
For citations:
Bunak M.S., Vishnyakova M.V., Stashuk G.A., Biktimirov R.G. Using the arterial spins labeling method (ASL-perfusion) for evaluation of glioblastoma residual tissue. Journal of radiology and nuclear medicine. 2018;99(6):305-309. (In Russ.) https://doi.org/10.20862/0042-4676-2018-99-6-305-309