Voxel-based morphometry in amyotrophic lateral sclerosis
https://doi.org/10.20862/0042-4676-2018-99-6-287-294
Abstract
Objective: to investigate changes in grey matter volume in patients with classical amyotrophic lateral sclerosis (ALS) and lower motor neuron syndrome (LMNS) with voxel-based morphometry (VBM).
Material and methods. 30 patients with classical ALS, 22 patients with LMNS and 23 age and gender matched healthy controls were enrolled in this study. All participants underwent a T1MPR (multiplanar reconstruction) magnetic resonance imaging with post-processing included spatial normalization, segmentation and smoothing. VBM was used to investigate changes in grey matter volume across the groups.
Results. There was a significant decrease in grey matter volume of middle part of left pre- and postcentral gyri, middle part of right precentral gyrus, right and left occipital lobes in patients with classical ALS compared to healthy subjects. There was no difference in grey matter volume between patients with LMNS and healthy controls. Patients with classical ALS showed a significant decrease in grey matter volume of middle part of left preand postcentral gyri, upper part of left precentral gyrus, middle and upper parts of right precentral gyrus, right and left occipital lobes compared to patients with LMNS. There was no significant correlation between grey matter volume and clinical findings in patients with ALS and LMNS.
Conclusion. VBM reveals a decrease in grey matter volume of motor and nonmotor brain regions in patients with classical ALS, but not in patients with LMNS.
About the Authors
I. S. BakulinRussian Federation
Il’ya S. Bakulin - Junior Researcher.
Volokolamskoe shosse, 80, Moscow, 125367
R. N. Konovalov
Russian Federation
Cand. Med. Sc., Senior Researcher.
Volokolamskoe shosse, 80, Moscow, 125367
M. V. Krotenkova
Russian Federation
Dr. Med. Sc., Head of Radiology Department.
Volokolamskoe shosse, 80, Moscow, 125367
N. A. Suponeva
Russian Federation
Dr. Med. Sc., Head of Neurorehabilitation and Physiotherapy Department.
Volokolamskoe shosse, 80, Moscow, 125367
M. N. Zakharova
Russian Federation
Dr. Med. Sc., Professor, Head of 6th Neurology Department.
Volokolamskoe shosse, 80, Moscow, 125367
References
1. Van Es M.A., Hardiman O., Chio A., Al-Chalabi A., Pasterkamp R.J., Veldink J.H. et al. Amyotrophic lateral sclerosis. Lancet. 2017; 390 (10107): 2084–98. DOI: 10.1016/S0140-6736(17)31287-4
2. Brooks B.R., Miller R.G., Swash M., Munsat T.L. World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. Other. Motor. Neuron. Disord. 2000; 1 (5); 293–9.
3. Huynh W., Simon N.G., Grosskreutz J., Turner M.R., Vucic S., Kiernan M.C. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin. Neurophysiol. 2016; 127 (7): 2643–60. DOI: 10.1016/j.clinph.2016.04.025
4. Бакулин И.С., Червяков А.В., Кремнева Е.И., Коновалов Р.Н., Захарова М.Н. Структурная и функциональная нейровизуализация при боковом амиотрофическом склерозе. Анналы клинической и экспериментальной неврологии. 2017; 11 (2): 72–82. DOI: 10.18454/ACEN.2017.2.11
5. Chio` A., Calvo A., Moglia C., Mazzini L., Mora G., PARALS study group. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J. Neurol.Neurosurg. Psychiatry. 2011; 82 (7): 740–6. DOI: 10.1136/jnnp.2010.235952
6. Swinnen B., Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2014; 10 (11): 661–70. DOI: 10.1038/nrneurol.2014.184
7. Бакулин И.С., Закройщикова И.В., Супонева Н.А., Захарова М.Н. Боковой амиотрофический склероз: клиническая гетерогенность и подходы к классификации. Нервно-мышечные болезни. 2017; 7 (3): 10–20. DOI: 10.17650/22228721-2017-7-3-10-20 DOI: 10.17650/2222-8721-20177-3-10-20]
8. Turner M.R., Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J. Neurol. Neurosurg. Psychiatry. 2015; 86 (6): 667–73. DOI: 10.1136/jnnp-2014308946
9. Chio` A., Pagani M., Agosta F., Calvo A., Cistaro A., Filippi M. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol. 2014; 13 (12): 1228–40. DOI: 10.1016/S14744422(14)70167-X
10. Pradat P.F., El Mendili M.M. Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed. Res. Int. 2014; 2014: 467560. DOI: 10.1155/2014/467560
11. Пирадов М.А., Танашян М.М., Кротенкова М.В., Брюхов В.В., Кремнева Е.И., Коновалов Р.Н. Передовые технологии нейровизуализации. Анналы клинической и экспериментальной неврологии. 2015; 9 (4): 11–8.
12. Whitwell J.L. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J. Neurosci. 2009; 29 (31): 9661–4. DOI: 10.1523/JNEUROSCI.2160-09.2009
13. Chen Z., Ma L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: a voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph. Lateral. Scler. 2010; 11 (6): 549–54. DOI: 10.3109/17482968.2010.516265
14. Sheng L., Ma H., Zhong J., Shang H., Shi H., Pan P. Motor and extramotor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiol. Aging. 2015; 36 (12): 3288–99. DOI: 10.1016/j.neurobiolaging.2015.08.018
15. Shen D., Cui L., Fang J., Cui B., Li D., Tai H. Voxel-Wise Meta-Analysis of Gray Matter Changes in Amyotrophic Lateral Sclerosis. Front. Aging. Neurosci. 2016; 8: 64. DOI: 10.3389/fnagi.2016.00064
16. Schuster C., Kasper E., Machts J., Bittner D., Kaufmann J., BeneckeR. et al. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: a neuroimaging study. J. Neurol. 2013; 260 (11): 2856–64. DOI: 10.1007/s00415-013-7083-z
17. Walhout R., Westeneng H.J., Verstraete E., Hendrikse J., Veldink J.H., van den Heuvel M.P. et al. Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J. Neurol. Neurosurg. Psychiatry. 2015; 86 (3): 288–94. DOI: 10.1136/jnnp-2013-306839
18. Spinelli E.G., Agosta F., Ferraro P.M., Riva N., Lunetta C., Falzone Y.M. et al. Brain MR imaging in patients with lower motor neuron-predominant disease. Radiology. 2016; 280 (2): 545–56. DOI: 10.1148/radiol.2016151846
19. Cedarbaum J.M., Stambler N., Malta E., Fuller C., Hilt D., Thurmond B., Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999; 169 (1–2): 13–21.
20. Filippini N., Douaud G., MackayC.E., Knight S., Talbot K., Turner M.R. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology. 2010; 75 (18): 1645–52. DOI: 10.1212/WNL.0b013e3181fb84d1
21. Cosottini M., Pesaresi I., Piazza S., Diciotti S., Cecchi P., Fabbri S. et al. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis. Exp. Neurol. 2012; 234 (1): 169–80. DOI: 10.1016/j.expneurol.2011
22. Kwan J.Y., Meoded A., Danielian L.E., Wu T., Floeter M.K. Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin. 2012; 2: 151–60. DOI: 10.1016/j.nicl.2012.12.003
23. Grosskreutz J., Kaufmann J., Frädrich J., Dengler R., Heinze H.J., Peschel T. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol. 2006; 25: 6–17. DOI: 10.1186/1471-2377-6-17
24. Xiong J., Parsons L.M., Gao J.H., Fox P.T. Interregional connectivity to primary motor cortex revealed using MRI resting states images. Hum. Brain. Mapp. 1999; 8 (2–3): 151–6.
25. Zhou F., Xu R., Dowd E., Zang Y., Gong H., Wang Z. Alterations in regional functional coherence within the sensory-motor network in amyotrophic lateral sclerosis. Neurosci Lett. 2014; 558: 192–6. DOI: 10.1016/j.neulet.2013.11.022
26. Schieber M.H. Comparative anatomy and physiology of the corticospinal system. Handb. Clin. Neurol. 2007; 82: 15–37. DOI: 10.1016/S0072-9752(07)80005-4
27. Menon P., Geevasinga N., van den Bos M., Yiannikas C., Kiernan M.C., Vucic S. Cortical hyperexcitability and disease spread in amyotrophic lateral sclerosis. Eur. J. Neurol. 2017; 24 (6): 816–24. DOI: 10.1111/ene.13295
28. Ravits J., Paul P., Jorg C. Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology. 2007; 68 (19): 1571–5.
29. Riku Y., Atsuta N., Yoshida M., Tatsumi S., Iwasaki Y., Mimuro M. et al. Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis. BMJ Open. 2014; 4 (5): e005213. DOI: 10.1136/bmjopen-2014-005213
30. Menon P., Kiernan M.C., Vucic S. Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin. Neurophysiol. 2015; 126 (4): 803–9. DOI: 10.1016/j.clinph.2014.04.023
31. Bede P., Bokde A., Elamin M., Byrne S., McLaughlin R.L., Jordan N. et al. Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J. Neurol. Neurosurg. Psychiatry. 2013; 84 (7): 766–73. DOI: 10.1136/jnnp-2012302674
32. Agosta F., ValsasinaP., Riva N., Copetti M.,Messina M.J., Prelle A. et al. The cortical signature of amyotrophic lateral sclerosis. PLoS One. 2012; 7 (8): e42816. DOI: 10.1371/journal.pone.0042816
33. Pagani M., Chio A., Valentini M.C., Oberg J., Nobili F., Calvo A. et al. Functional pattern of brain FDGPET in amyotrophic lateral sclerosis. Neurology. 2014; 83 (12): 1067–74. DOI: 10.1212/WNL.0000000000000792
34. Lule D., Diekmann V., Muller H.P., Kassubek J., Ludolph A.C., Birbaumer N. Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry. 2010; 81 (8): 899–906. DOI: 10.1136/jnnp.2009.192260
35. Münte T.F., Tröger M.C., Nusser I., Wieringa B.M., Johannes S., Matzke M. et al. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. J. Neurol. 1998; 245 (4): 206–10.
36. Loewe K., Machts J., Kaufmann J., Petri S., Heinze H.J., Borgelt C. etal. Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis. Sci Rep. 2017; 7: 40252. DOI: 10.1038/srep40252
37. Kushner P.D., Stephenson D.T., Wright S. Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J. Neuropathol. Exp. Neurol. 1991; 50 (3): 263–77.
Review
For citations:
Bakulin I.S., Konovalov R.N., Krotenkova M.V., Suponeva N.A., Zakharova M.N. Voxel-based morphometry in amyotrophic lateral sclerosis. Journal of radiology and nuclear medicine. 2018;99(6):287-294. (In Russ.) https://doi.org/10.20862/0042-4676-2018-99-6-287-294