Preview

Journal of radiology and nuclear medicine

Advanced search

PERSONALIZED APPROACH TO THYROTOXICOSIS TREATMENT: THE HISTORY OF DOSIMETRIC CONCEPTS DEVELOPMENT

https://doi.org/10.20862/0042-4676-2017-98-4-214-218

Abstract

In recent decade, nuclear medicine demonstrates a tendency towards improvement of dosimetry approaches to radionuclide therapy. Historically there were developed several methods for calculating effective therapeutic activity: prescription of standard activities (fixed activities) and personalized assessment of effective activity based on evaluation of individual radiobiokinetics, followed by the mathematical modeling. Accumulated variety of approaches to dosimetric planning of radionuclide therapy demonstrates that an optimal algorithm for calculation has not been developed so far. Developing robust pre-therapeutic dosimetric planning protocol for radionuclide therapy requires consideration of all factors (individual biokinetics, geometry, properties of radionuclide) which are independently and significantly affects target absorbed dose delivery on the one hand, and exposure of other organs and tissues, on another hand.

About the Authors

P. O. Rumyantsev
Endocrinology Research Center
Russian Federation

MD, PhD, DSc, Deputy Director for Innovative Development, Head of Radionuclide Diagnostics and Therapy Department

ul. Dmitriya Ul’yanova, 11, Moscow, 117036, Russian Federation



A. A. Trukhin
Endocrinology Research Center
Russian Federation

Medical Physicist

ul. Dmitriya Ul’yanova, 11, Moscow, 117036, Russian Federation



M. V. Degtyarev
Endocrinology Research Center
Russian Federation

Head of Department of Radionuclide Diagnosis

ul. Dmitriya Ul’yanova, 11, Moscow, 117036, Russian Federation



References

1. Bahn R.S., Burch H.B., Cooper D.S. ATA / Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists Hyperthyroidism and other causes of thyrotoxicosis:

2. management guide. Endocr. Pract. 2011; 17 (3): 1–65.

3. Skanjeti A., Miranti A., Yabar G.M.D., Bianciotto D., Trevisiol E., Stasi M. et al. A simple and accurate dosimetry protocol to estimate activity for hyperthyroidism treatment. Nucl. Med. Rev. 2015; 18 (1): 13–8.

4. Stokkel M.P.M., Handkiewicz Junak D., Lassmann M., Dietlein M., Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur. J. Nucl. Med. Mol. Imag. 2010; 37 (11): 2218–28.

5. Румянцев П.О., Коренев С.В. История появления терапии радиоактивным йодом. Клиническая и экспериментальная тиреоидология. 2015; 11 (4): 51–5. [Rumyantsev P.O., Korenev S.V. History of radioiodine therapy uprise. Klinicheskaya i Eksperimental’naya Tireoidologiya (Clinical and Experimental Tyroidology, Russian journal). 2015; 11 (4): 51–5 (in Russ.).]

6. Abbe T. Notes on the physiologic and the therapeutic action of radium. Wash. Med. Ann. 1904; 2: 363–76.

7. Holzknecht G. Eine neue einfache Dosierungsmethode in der Rüntgentherapie. Münch. Med. Wochenschr. 1902; 45.

8. Holzknecht G. Ueber das Chromoradiometer. II. Internationaler Kongreβ für med. Elektrologie und Radiologie. 1902; 6 (49).

9. Seymour M. Treatment of Grave’s disease by Roentgen rays. Boston Med. Surg. J. 1916; 175: 568–9.

10. Marinelli L.D. Dosage determination in the use of radioactive isotopes. J. Clin. Invest. 1949; 1271 (80).

11. Drugs@FDA: FDA Approved Drug Products. Available at: http://www.accessdata.fda.gov/scripts/cder/daf/(accessed 9 August 2017).

12. Howell R.W., Wessels B.W., Loevinger R. The MIRD perspective. J. Nucl. Med. 1999; 40: 37S–44S.

13. Ellen W.H., Callahan A.B., Brownell G.L. Gamma-ray dosimetry of internal emitters. I. Monte Carlo calculations of absorbed dose from point sources. Br. J. Radial. 1964; 37: 45–52.

14. Ellett W.H., Callahan A.B., Brownell G.L. Gamma-ray dosimetry of internal emitters. II. Monte Carlo calculations of absorbed dose from uniform sources. Br. J. Radiol. 1965; 38: 541–4.

15. Snyder W.S., Ford M.R., Warner G.G. MIRD Pamphlet No. 5: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J. Nucl. Med. 1969; Suppl. 3: 7–52.

16. Feller P.A. CAMIRD/II-Computer software to facilitate absorbed-dose alculations. In: Radiopharmaceutical dosimetry symposium proceedings. Rockville. 1976; 1976, 76 (8044):, 119–26.

17. Stabin M.G. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 1996; 37: 538–46.

18. Климанов В.А. Радиобиологическое и дозиметрическое планирование лучевой и радионуклидной терапии. М.; 2011. [Klimanov V.A. Radiobiology and dosimetry planning of distant radiotherapy and radionuclide therapy. Moscow; 2011 (in Russ.).]

19. Documentation and recommendations for users | GATE. Available at: http://www.opengatecollaboration.org/UsersGuide/(accessed 9 August 2017).

20. Geant4: a toolkit for the simulation of the passage of particles through matter. Available at: https://geant4.web.cern.ch/geant4/(accessed 9 August 2017).

21. Los Alamos National Laboratory: MCNP Home Page. Available at: https://mcnp.lanl.gov/(accessed 9 August 2017).


Review

For citations:


Rumyantsev P.O., Trukhin A.A., Degtyarev M.V. PERSONALIZED APPROACH TO THYROTOXICOSIS TREATMENT: THE HISTORY OF DOSIMETRIC CONCEPTS DEVELOPMENT. Journal of radiology and nuclear medicine. 2017;98(4):214-218. (In Russ.) https://doi.org/10.20862/0042-4676-2017-98-4-214-218

Views: 1021


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)