Preview

Journal of radiology and nuclear medicine

Advanced search

Whole-body diffusion-weighted magnetic resonance imaging by estimating the measurable diffusion coefficient in Hodgkin lymphoma

https://doi.org/10.20862/0042-4676-2015-0-2-28-34

Abstract

Objective: to determine whether the measurable diffusion coefficient (MIC) may be used to differentiate normal and lymphomatosisaltered lymph nodes (LNs) in patients with Hodgkin lymphoma (HL).

Material and methods. Whole-body magnetic resonance (MR) imaging was used to compare the MICs of LNs in 27 apparently healthy  individuals and 41 patients with a verified diagnosis of HL.

Results. Construction of 95% confidence intervals showed that the MICs of normal LNs were in the range of 1.00 to 1.73× ×10-3 mm2/sec and  significantly higher (p<0.05) than those of lymphomatosis-affected LNs (MIC, 0.59 to 0.94×10-3 mm2/sec). The cut-off point (for discretization) of normal and lymphomatosis-altered LNs was in the range of 0.94 to 1.00×10-3 mm2/sec. Consequently, the LN with a MIC of less than 0.94×10-3 mm2/sec may be thought of as affected by the lymphomatous process.

Conclusion. MIC calculation permits differentiation of normal and affected LNs having equal signal characteristics (including those on diffusion-weighted MR images).

 

About the Authors

A. I. Mikhaylov
Russian Medical Academy of Postgraduate Education, Ministry of Health of the RF
Russian Federation
Postgraduate


V. O. Panov
Russian Medical Academy of Postgraduate Education, Ministry of Health of the RF
Russian Federation
MD, PhD, Associate Professor of Department of Radiation Diagnosis,
Radiotherapy and Medical Physics;


I. E. Tyurin
Russian Medical Academy of Postgraduate Education, Ministry of Health of the RF
Russian Federation
MD, PhD, DSc, Professor, Chief of Department
of Radiation Diagnosis, Radiotherapy and Medical Physics


References

1. Heidemann R.M., Цzsarlak Ц., Parizel P.M. et al. A brief review of parallel magnetic resonance imaging. Eur. Radiol. 2003; 13 (10): 2323–37.

2. Pruessmann K.P. Encoding and reconstruction in parallel MRI. NMR in Biomedicine. 2006; 19 (3): 288–99.

3. Pipe J.G. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn. Res. Med. 1999; 42 (5): 963–9.

4. Kwee T.C., Takahara T., Vermoolen M.A. et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr. Radiol. 2010; 40 (10): 1592–602.

5. Takahara T., Imai Y., Yamashita T. et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Matrix. 2004; 160 (160): 160.

6. Kwee T.C., Takahara T., Luijten P.R. et al. ADC measurements of lymph nodes: inter-and intraobserver reproducibility study and an overview of the literature. Eur. J.Radiol. 2010; 75 (2): 215–20.

7. Kwee T.C., Takahara T., Ochiai R. et al. Diffusion-weighted wholebody imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur. Radiol. 2008; 18 (9): 1937–52.

8. Kwee T.C., Basu S., Torigian D.A. et al. Evolving importance of diffusion- weighted magnetic resonance imaging in lymphoma. PET Clinics. 2012; 7 (1): 73–82.

9. Kwee T.C., van Ufford H.M.E.Q., Beek F.J. et al. Whole body magnetic resonance imaging, including diffusion weighted imaging, for diagnosing bone marrow involvement in malignant lymphoma. Br. J. Haematol. 2010; 149 (4): 628–30.

10. Kwee T.C., Kwee R.M., Nievelstein R.A. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008; 111 (2): 504–16.

11. Van Ufford H.M.E., Kwee T.C., Beek F.J. et al. Whole body MRI, including diffusion-weighted imaging, compared to 18F-FDGPETCT in newly diagnosed lymphoma: initial results. Am. J. Roentgenol. 2011; 196 (3): 662–9.

12. Vermoolen M.A., Kersten M.J., Fijnheer R. et al. Magnetic resonance imaging of malignant lymphoma. Expert Review Hematol. 2011; 4 (2): 161.

13. Stejkal E.O., Tanner J.E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chemical. Physics. 1965; 42 (1): 288–92.

14. Le Bihan D., Breton E., Lallemand D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988; 168 (2): 497–505.

15. Li S., Xue H., Li J. et al. Application of whole body diffusion weighted MR imaging for diagnosis and staging of malignant lymphoma. Chin. Med. Sci. J. 2008; 23 (3): 138–44.

16. Lin C., Itti E., Haioun C. et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J. Nucl. Med. 2007; 48 (10): 1626–32.

17. Hayashida Y., Hirai T., Morishita S. et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. Am. J. Neuroradiol. 2006; 27 (7): 1419–25.

18. Schnapauff D., Zeile M., Niederhagenet M.B. et al. Diffusion-weighted echo- planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas. J. Magn. Resonan. Imag. 2009; 29 (6): 1355–9.

19. Sugahara T., Korogi Y., Kochi M. et al. Usefulness of diffusion weighted MRI with echo planar technique in the evaluation of cellularity in gliomas. J. Magn. Resonan. Imag. 1999; 9 (1): 53–60.

20. Padhani A.R., Liu G., Mu-Koh D. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009; 11 (2): 102–25.

21. Ioachim H.L., Medeiros L.J. Ioachim's lymph node pathology. Lippincott: Williams & Wilkins; 2009.

22. Holzapfel K., Duetsch S., Fauseret C. et al. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur. J. Radiol. 2009; 72 (3): 381–7.

23. King A.D., Ahuja A.T., Yeunget D.K.W. et al. Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging 1. Radiology. 2007; 245 (3): 806–13.

24. Rahmouni A., Tempany C., Jones R. et al. Lymphoma: monitoring tumor size and signal intensity with MR imaging. Radiology. 1993; 188 (2): 445–51.

25. Sumi M., Sakihama N., Sumi T. et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer.Am. J. Neuroradiol. 2003; 24 (8): 1627–34.

26. Sumi M., Van Cauteren M., Nakamura T. MR microimaging of benign and malignant nodes in the neck. Am. J. Roentgenol. 2006; 186 (3): 749–57.

27. Sumi M., Nakamura T. Diagnostic importance of focal defects in the apparent diffusion coefficient-based differentiation between lymphoma and squamous cell carcinoma nodes in the neck. Eur. Radiol. 2009; 19 (4): 975–81.

28. Lin C., Luciani A., Itti E. et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest. Radiol. 2011; 46 (5): 341–9.

29. Koh D.M., Collins D.J. Diffusionweighted MRI in the body: applications and challenges in oncology. Am. J. Roentgenol. 2007; 188 (6): 1622–35.

30. Torabi M., Aquino S.L., Harisinghani M.G. et al. Current concepts in lymph node imaging. J. Nucl. Med. 2004; 45 (9): 1509–18.

31. Cheson B.D., Fisher R.I., Barrington S.F. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano Classification. J. Clin. Oncol. 2014. С. JCO. 2013.54. 8800.

32. Willinek W.A., Gieseke J., Kukuk G. Parallel RF transmission in body MRI for reduced dielectric shading, improved B1 homogeneity and accelerated imaging at 3.0 T: Initial clinical experience in 40 patients using MultiTransmit. In: ISMRM 17th Scientific Meeting & Exhibition. Honolulu, Hawai’i, USA; 2009.

33. Takahara T., Zwanenburg J., Visser F. et al. Fat suppression with Slice-Selection Gradient Reversal (SSGR) revisited. In: ISMRM 17th Scientific Meeting & Exhibition. Honolulu, Hawai’i, USA; 2009.

34. Thoeny H.C., Triantafyllou M., Birkhaeuseret F.D. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 2009; 55 (4): 761–9.

35. Von Schulthess G.K., Schlemmer H.P.W. A look ahead: PET/MR versus PET/CT. Eur. J. Nucl. Med. Molecul. Imag. 2009; 36 (1): 3–9.


Review

For citations:


Mikhaylov A.I., Panov V.O., Tyurin I.E. Whole-body diffusion-weighted magnetic resonance imaging by estimating the measurable diffusion coefficient in Hodgkin lymphoma. Journal of radiology and nuclear medicine. 2015;(2):28-34. (In Russ.) https://doi.org/10.20862/0042-4676-2015-0-2-28-34

Views: 1550


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)