Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Имеет ли клиническое значение стабильность гадолинийсодержащих магнитно-резонансных контрастных средств?


https://doi.org/10.20862/0042-4676-2016-97-4-243-256

Полный текст:


Аннотация

Приведены современные сведения об острых и очень поздних побочных реакциях, возникающих при использовании гадолинийсодержащих магнитно-резонансных контрастных средств (ГМРКС). Рассмотрена роль термодинамической и кинетичес- кой стабильности ГМРКС в депонировании гадолиния в тканях, в том числе головном мозге, развитии псевдогипокальциемии и нефрогенного системного фиброза (НСФ). В результате анализа данных о механизмах депонирования гадолиния в клетках организма и механизмах цитотоксичности от химического строения существующих ГМРКС сделан вывод, что для снижения накопления гадолиния в клетках и риска развития НСФ целесообразно использовать стабильные макроциклические препараты, такие как гадобутрол.

Об авторах

В. О. Панов
ГБОУ ДПО «Российская медицинская академия последипломного образования» Министерства здравоохранения РФ
Россия

к. м. н., доцент кафедры лучевой диагностики, лучевой терапии и медицинской физики,

ул. Баррикадная, 2/1, Москва, 125993



Н. Л. Шимановский
ГБОУ ВПО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения РФ
Россия

д. м. н., профессор, чл.-корр. РАН, заведующий кафедрой молекулярной фармакологии и радиобиологии им. академика П.В. Сергеева,

ул. Островитянова, 1, Москва, 117997



Список литературы

1. Bellin M.-F., Van Der Molen A.J. Extracellular gadolinium-based contrast media: An overview. Eur. J. Radiol. 2008; 66: 160–7.

2. ESUR 2016. 9.0 Contrast Media Guidelines. http://www.esur.org/esur-guidelines/

3. Voth M., Rosenberg M., Breuer J. Safety of gadobutrol, a new generation of contrast agents: experience from clinical trials and postmarketing surveillance. Invest. Radiol. 2011; 46 (11): 663–71.

4. Dillman J.R., Ellis J.H., Cohan R.H., Strouse P.J., Jan S.C. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. Am. J. Roentgenol. 2007; 189 (6): 1533–8.

5. Prince M.R., Zhang H., Zou Z., Staron R.B., Brill P.W. Incidence of immediate gadolinium contrast media reactions. Am. J. Roentgenol. 2011; 196 (2): W138–43.

6. Runge V.M. Safety of approved MR contrast media for intravenous injection. J. Magn. Reson. Imaging. 2000; 12: 205–13.

7. Raisch D.W., Garg V., Arabyat R., Shen X., Edwards B.J., Miller F.H. et al. Anaphylaxis associated with gadolinium-based contrast agents: data from the Food and Drug Administration's Adverse Event Reporting System and review of case reports in the literature. Expert Opin. Drug. Saf. 2014; 13 (1): 15–23.

8. Aran S., Shaqdan K.W., Abujudeh H.H. Adverse allergic reactions to linear ionic gadoliniumbased contrast agents: experience with 194, 400 injections. Clin. Radiol. 2015; 70: 466–75.

9. Endrikat J., Vogtlaender K., Dohanish S., Balzer T., Breuer J. Safety of gadobutrol: results from 42 clinical phase II to IV studies and postmarketing surveillance after 29 million applications. Invest. Radiol. 2016; 51 (9): 537–43.

10. Prince M.R., Lee H.G., Lee C.H., Youn S.W., Lee I.H., Yoon W. et al. Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study. Eur. Radiol. 2016. DOI 10.1007/s00330-016-4268-8

11. Hahn G., Sorge I., Gruhn B., Glutig K., Hirsch W., Bhargava R. et al. Pharmacokinetics and safety of gadobutrol-enhanced magnetic resonance imaging in pediatric patients. Invest. Radiol. 2009; 44 (12): 776–83.

12. Kunze C., Mentzel H.J., Krishnamurthy R., Fleck R., Stenzel M., Bhargava R. et al. Pharmacokinetics and safety of macrocyclic gadobutrol in children aged younger than 2 years including term newborns in comparison to older populations. Invest. Radiol. 2016; 51 (1): 50–7.

13. Hahn G. Open-label, Multicenter, Pharmacokinetic and Safety Study in Children Below 2 Years of Age Undergoing a Contrastenhanced MRI with an Intravenous Injection of a Single

14. Standard Dose of Gadobutrol. Abstract #SSM20-04. Radiological Society of North America (RNSA) Scientific Assembly and Annual Meeting. 2014, Nov. 30 – Dec. 5; USA. IL. Chicago. rsna2014.rsna.org/program/details/?emID=14008140 (Accessed January 3, 2015).

15. Glutig K., Bhargava R., Hahn G., Hirsch W., Kunze C., Mentzel H.J. et al. Safety of gadobutrol in more than 1,000 pediatric patients: subanalysis of the GARDIAN study, a global multicenter prospective non-interventional study. Pediatr. Radiol. 2016; 46 (9): 1317–23.

16. Morcos S.K. Extracellular gadolinium contrast agents: Differences in stability Eur. J. Radiol. 2008; 66: 175–9.

17. Rai R.M., Yang S.Q., McClain C., Karp C.L., Klein A.S., Diehl A.M. Kupffer cell depletion by gadolinium chloride enhances liver regeneration after partial hepatectomy in rats. Am. J. Physiol. 1996; 270 (6; Pt 1): G909–18.

18. Xia Q., Feng X., Huang H., Du L., Yang X., Wang K. Gadoliniuminduced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J. Neurochem. 2011; 117: 38–47.

19. Vogler H., Platzek J., Schuhmann-Giampieri G., Frenzel T., Weinmann H.J., Radüchel B. et al. Pre-clinical evaluation of gadobutrol: a new, neutral, extracellular contrast agent for magnetic resonance imaging. Eur. J. Radiol. 1995; 21 (1): 1–10.

20. Prince M.R., Erel H.E., Lent R.W., Blumenfeld J., Kent K.C., Bush H.L., Wang Y. Gadodiamide administration causes spurious hypocalcemia. Radiology. 2003; 227: 639–46.

21. Schmitt-Willich H. Stability of linear and macrocyclic gadolinium based contrast agents. Br. J. Radiol. 2007; 80: 581–2, 584–5.

22. Wedeking P., Kumar K., Tweedle M.F. Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn. Reson. Imaging. 1992; 10: 641–8.

23. Laurent S., Elst L.V., Copoix F., Muller R.N. Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Invest. Radiol. 2001; 36: 115–22.

24. Laurent S., Elst L.V., Muller R.N. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast. Media Mol. Imaging. 2006; 1: 128–37.

25. White G.W., Gibby W.A., Tweedle M.F. Comparison of Gd(DTPABMA) (Omniscan) versus Gd

26. (HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest. Radiol. 2006; 41: 272–8.

27. Gibby W.A., Gibby K.A., Gibby W.A. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest. Radiol. 2004; 39: 138–42.

28. Kimura J., Ishiguchi T., Matsuda J., Ohno R., Nakamura A., Kamei S. et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat. Med. 2005; 23: 322–6.

29. Emerson J., Kost G. Spurious hypocalcemia after Omniscan- or Opti-MARK-enhanced magnetic resonance imaging: an algorithm for minimizing a false-positive laboratory value. Arch. Pathol. Lab. Med. 2004; 128 (10): 1151–6.

30. Lin S.P., Brown J.J. MR contrast agents: physical and pharmacologic basics. J. Magn. Reson. Imaging. 2007; 25: 884–99.

31. Shellock F.G., Kanal E. Safety of magnetic resonance imaging contrast agents. J. Magn. Reson. Imaging. 1999; 10: 477–84.

32. Grobner T. Gadolinium – a specific trigger for the develobment of nephrogenic fibrosing dermopathy and nepgenie systemic fibrosis? Nephrol. Dial. Transpa. 2006; 21: 1104–8.

33. Marckmann P., Skov L., Rossen K., Dupont A., Damholt M.B., Heaf J.G., Thomsen H.S. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhaced magnetic resonance imaging. J. Am. Soc. Nephrol. 2006; 17: 2359–62.

34. Marckmann P., Skov L., Rossen K., Heaf J.G., Thomsen H.S. Casecontrol study of gadodiamiderelated nephrogenic systemic fibrosis. Nephrol. Dial. Transplant. 2007; 22: 3174–8.

35. Wiginton C.D., Kelly B., Oto A., Jesse M., Aristimuno P., Ernst R. et al. Gadolinium-based contrast exposure, nephrogenic systemic fibrosis, and gadolinium detection in tissue. AJR. 2008; 190: 1060–8.

36. Evenepoel P., Zeegers M., Segaert S. et al. Nephrogenic fibrosing dermopathy: a novel, disabling disorder in patients with renal failure. Nephrol. Dial. Transplant. 2004; 19: 469–73.

37. Peak A.S., Sheller A. Risk factors for developing gadolinium-induced nephrogenic systemic fibrosis. Ann. Pharmacother. 2007; 41: 1481–5.

38. Collidge T.A., Thomson P.C., Mark P.B. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007; 245: 168–75.

39. Swartz R.D. et al. Nephrogenic fibrosing dermopathy: a novel cutaneous fibrosing disorder in patients with renal failure. Am. J. Med. 2003; 114: 563–72.

40. Abraham J.L., Thakral C., Skov L. et al. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br. J. Dermatol. 2008; 158: 273–80.

41. Okada S. et al. Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiologica. 2001; 42: 339–41.

42. Thomson P.C., Collidge T.A., Mark P.B., Traynor J.P. Gadolinium contrast may be risky in kidney disease. Br. Med. J. 2007; 334: 1335–6.

43. Errante Y., Cirimele V., Mallio C.A. et al. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest. Radiol. 2014; 49 (10): 685–90.

44. Kanda T., Ishii K., Kawaguchi H., Kitajima K., Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014; 270 (3): 834–41.

45. Kanda T., Osawa M., Oba H. et al. High signal intensity in dentate nucleus on unenhanced T1- weigh-ted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015; 275 (3): 803–9.

46. McDonald R.J., McDonald J.S., Kallmes D.F., Jentoft M.E., Murray D.L., Thielen K.R. et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015; 275 (3): 772–82.

47. Cabella C., Crich S.G., Corpillo D. et al. Cellular labeling with Gd(III) chelates: only high thermodynamic stabilities prevent the cells acting as 'sponges' of Gd3+ ions. Contrast Media Mol. Imaging. 2006; 1: 23–9.

48. Boyd A.S., Zic J.A., Abraham J.L. Gadolinium deposition in nephrogenic fibrosing dermopathy. J. Am. Acad. Dermatol. 2007; 56 (1): 27–30.

49. Харламов В.Г., Кулаков В.Н., Липенгольц А.А., Шимановский Н.Л. Стабильность гадолинийсодержащих магнитно-резонансных контрастных средств в присутствии ионов цинка и кальция в различных средах. Вестник РГМУ. 2016; 1: 73–8. [Kharlamov V.G., Kulakov V.N., Lipengol’ts A.A., Shimanovskiy N.L. Stability of gadolinium-based contrast agents in the presence of zinc and calcium ions in different media. Vestnik RGMU. 2016; 1: 73–8 (Russ.).]

50. Yorulmaz H., Seker F.B., Demir G., Yalçn I.E., Oztas B. The effects of zinc treatment on the blood-brain barrier permeability and brain element levels during convulsions. Biol. Trace Elem. Res. 2013; 151 (2): 256–62.

51. Jost G., Lenhard D.C., Sieber M.A., Lohrke J., Frenzel T., Pietsch H. Signal Increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents comparison of linear and macrocyclic agents. Invest. Radiol. 2016; 51: 83–9.

52. Sato T., Ito K., Tamada T. et al. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS). Magn. Reson. Imaging. 2013; 31 (8): 1412–7.

53. Tamrazi A., Vasanawala S.S. Functional hepatobiliary MR imaging in children. Pediatr. Radiol. 2011; 41 (10): 1250–8.

54. Yoon H.J., Jeon T.Y., Yoo S.Y. et al. Hepatic tumours in children with biliary atresia: single-centre experience in 13 cases and review of the literature. Clin. Radiol. 2014; 69 (3): e113–9.

55. Khokhlov V.F., Yashkin P.N., Silin D.I., Djorova E.S., Lawaczeck R Neutron capture therapy with gadopentetate dimeglumine: experiments on tumor-bearing rats. Acad. Radiol. 1995; 2 (5): 392–8.

56. Hofmann B., Fischer C.O., Lawaczeck R., Platzek J., Semmler W. Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent gadobutrol. Invest. Radiol. 1999; 34 (2): 126–33.

57. Goorley T., Nikjoo H. Electron and photon spectra for three gadolinium-based cancer therapy approaches. Radiat. Res. 2000; 154 (5): 556–63.

58. Dewi N., Mi P., Yanagie H., Sakurai Y., Morishita Y., Yanagawa M.J. et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. Cancer Res. Clin. Oncol. 2016; 142 (4): 767–75.

59. Peters T., Grunewald C., Blaickner M., Ziegner M., Schütz C., Iffland D. et al. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy. Radiat. Oncol. 2015; 10: 52.


Дополнительные файлы

Для цитирования: Панов В.О., Шимановский Н.Л. Имеет ли клиническое значение стабильность гадолинийсодержащих магнитно-резонансных контрастных средств? Вестник рентгенологии и радиологии. 2016;97(4):243-256. https://doi.org/10.20862/0042-4676-2016-97-4-243-256

For citation: Panov V.O., Shimanovskiy N.L. Нas the stability of gadoliniumbased magnetic resonance contrast media the clinical significance? Journal of radiology and nuclear medicine. 2016;97(4):243-256. (In Russ.) https://doi.org/10.20862/0042-4676-2016-97-4-243-256

Просмотров: 229

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)