CLINICAL USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPY IN BRAIN TUMORS AND ADJACENT TISSUES
https://doi.org/10.20862/0042-4676-2014-0-1-39-50
Abstract
Magnetic resonance spectroscopy (MRS) is a noninvasive technique to measure the concentration of chemical substances, which estimates biochemical changes in health and different diseases in vivo. The technique opens up a wide range of possibilities for both primary diagnosis and evaluation of the efficiency of further treatment – medical or surgical one. This review of literature is dedicated to proton MRS used in different tumors of the brain, its tunics, and adjacent nerves. It contains and systematizes data related to the problems of primary diagnosis, differential diagnosis, and evaluation of the efficiency of treatment for tumors and gives references to both basic researches in this area and recent investigations.
About the Authors
A. V. BakunovichRussian Federation
Radiologist of Center of Radiology of Federal Center of Treatment and Rehabilitation
V. E. Sinitsyn
Russian Federation
MD, PhD, DSc, Professor, Director of Center of Radiology of Federal Center of Treatment and Rehabilitation
E. A. Mershina
Russian Federation
MD, PhD, Head of the Department of Tomography of Center of Radiology of Federal Center of Treatment and Rehabilitation
References
1. Proctor W.G., Yu F.C. The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys. Rev. 1950; 77: 717.
2. Radda G.K. The use of NMR spectroscopy for the understanding of disease. Science. 1986; 233: 640–55.
3. Gillard J.H., Waldman A.D., Barker P.B. Clinical MR Neuroimaging Diffusion, Perfusion and Spectroscopy. Cambridge University Press; 2005.
4. Frahm J., Bruhn H., Gyngell M.L., Merboldt K.D., Hanicke W., Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn. Reson. Med. 1989; 9: 79–93.
5. Bottomley P. In U.S. Patent. Vol. 4 480 228 USA; 1984.
6. Suhy J., Rooney W. et al. 1H MRSI comparison of white matter and lesions in primary progressive and relapsing – remitting MS. Mult. Scler. 2000; 6 (3): 148–55.
7. Lin A.P., Ross B.D. Short-echo time proton MR spectroscopy in the presence of gadolinium. J. Com-put. Assist. Tomogr. 2001; 25 (5): 705–12.
8. Osborn A. Diagnostic Imaging: Brain. Amirsys; 2004.
9. Preul M.C., Caramanos Z., Col-lins D.L., Villemure J.G., Leblanc R., Olivier A. et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat. Med. 1996; 2: 323–5.
10. Langkowski J.H., Wieland J., Bomsdorf H., Leibfritz D., West-phal M., Offermann W. et al. Preoperative localized in vivo proton spectroscopy in cerebral tumors at 4.0 Tesla – first results. Magn. Reson. Imaging. 1989; 7: 547–55.
11. Gill S.S., Thomas D.G., Van B.N., Gadian D.G., Peden C.J., Bell J.D. et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J. Comput. Assist. Tomogr. 1990; 14: 497–504.
12. Negendank W.G., Sauter R., Brown T.R., Evelhoch J.L., Falini A., Gotsis E.D. et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J. Neurosurg. 1996; 84: 449–58.
13. Trufanov G.E., Tyutin L.A. Magnetic resonance spectroscopy: A Guide for Physicians. St. Petersburg: ELBI-SPb; 2008 (in Russian).
14. Bendini M., Marton E., Feletti A., Rossi S., Curtolo S., Inches I. et al. Primary and metastatic intraaxial brain tumors: prospective comparison of multivoxel 2D chemical-shift imaging (CSI) proton MR spectroscopy, perfusion MRI, and histopathological findings in a group of 159 patients. Acta. Neurochir. (Wien). 2011; 153 (2): 403–12.
15. Gupta R.K., Husain M., Vatsal D.K., Kumar R., Chawla S., Husain N. Comparative evaluation of magnetization transfer MR imaging and in-vivo proton MR spectroscopy in brain tuberculomas. Magn. Reson. Imaging. 2002; 20: 375–81.
16. Butzen J., Prost R., Chetty V., Do-nahue K., Neppl R., Bowen W. et al. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. Am. J. Neuroradiol. 2000; 21: 1213–9.
17. Saindane A.M., Cha S., Law M., Xue X., Knopp E.A., Zagzag D. Proton MR spectroscopy of tumefactive demyelinating lesions. Am. J. Neuroradiol. 2002; 23: 1378–86.
18. Gupta R.K., Pandey R., Khan E.M., Mittal P., Gujral R.B., Chhabra D.K. Intracranial tuberculomas: MRI signal intensity correlation with histopathology and localised proton spectroscopy. Magn. Reson. Imaging. 1993; 11: 443–9.
19. Yamagata N.T., Miller B.L., McBride D., Chang L., Chiang F., Nikas D. et al. In vivo proton spectroscopy of intracranial infections and neoplasms. J. Neuroimaging. 1994; 4: 23–8.
20. Remy C., Grand S., Lai E.S., Belle V., Hoffmann D., Berger F. et al. 1H MRS of human brain abscesses in vivo and in vitro. Magn. Reson. Med. 1995; 34: 508–14.
21. Grand S., Passaro G., Ziegler A., Esteve F., Boujet C., Hoffmann D. et al. Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy – initial results. Radiology. 1999; 213: 785–93.
22. Croteau D., Scarpace L., Hearshen D., Gutierrez J., Rock J., Rosenblum M. et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histo-pathologic analysis of patients with untreated glioma. Neurosurgery. 2001; 49: 823–9.
23. Daumas-Duport C., Scheithauer B.W., Kelly P.J. A histologic and cytologic method for the spatial definition of gliomas. Mayo Clin. Proc. 1987; 62: 435–449.
24. Dowling C., Bollen A.W., Noworolski S.M., McDermott M.W., Barbaro N.M., Day M.R. et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. Am. J. Neuroradiol. 2001; 22: 604–12.
25. Rock J.P., Hearshen D., Scarpace L., Croteau D., Guitierrez J., Fisher J.L. et al. Correlations between magnetic resonance spectroscopy and imageguided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002; 51(4): 912–23.
26. Heesters M.A., Kamman R.L., Mo-oyaart E.L., Go K.G. Localized proton spectroscopy of inoperable brain gliomas. Response to radiation therapy. J. Neurooncol. 1993; 17: 27–35.
27. Tarnawski R., Sokol M., Pieniazek P., Maciejewski B., Walecki J., Mis-zczyk L. et al. 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2002; 52: 1271–6.
28. Usenius T., Usenius J.P., Tenhunen M., Vainio P., Johansson R., Soimakallio S. et al. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1995; 33: 719–24.
29. Kamada K., Houkin K., Abe H., Sawamura Y., Kashiwaba T. Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol. Med. Chir. (Tokyo). 1997; 37 (3): 250–6.
30. Preul M.C., Caramanos Z., Villemu-re J.G., Shenouda G., Leblanc R., Langleben A. et al. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery. 2000; 46: 306–18.
31. Howe F.A., Barton S.J., Cudlip S.A., Stubbs M., Saunders D.E., Murphy M. et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 2003; 49: 223–32.
32. Urenjak J., Williams S.R., Gadi-an D.G., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J. Neurosc. 1993; 13: 981.
33. Ricci P.E., Pitt A., Keller P.J., Coons S.W., Heiserman J.E. Effect of voxel position on single-voxel MR spectroscopy findings. Am. J. Neuroradiol. 2000; 21: 367–74.
34. Remy C., Fouilhe N., Barba I., Sam-Lai E., Lahrech H., Cucurella M.G. et al. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res. 1997; 57: 407–14.
35. Sijens P.E., Knopp M.V., Brunetti A., Wicklow K., Alfano B., Bachert P. et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn. Reson. Med. 1995; 33: 818–26.
36. Sijens P.E., Levendag P.C., Vecht C.J., van Dijk P., Oudkerk M. 1H MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed. 1996; 9: 65–71.
37. Fan G., Sun B., Wu Z., Guo Q., Guo Y. In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin. Radiol. 2004; 59 (1): 77–85.
38. Podoprigora A.E., Pronin I.N., Fadeeva L.M. Proton magnetic resonance spectroscopy in neuroradiology. Meditsinskaya vizualizatsiya. 2000; 4: 86–91(in Russian).
39. Aiken N.R., Gillies R.J. Phosphomonoester metabolism as a function of cell proliferative status and exogenous precursors. Anticancer Res. 1996; 16: 1393–7.
40. Tedeschi G., Lundbom N., Raman R., Bonavita S., Duyn J.H., Alger J.R. et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J. Neurosurg. 1997; 87: 516–24.
41. Taylor J.S., Langston J.W., Red-dick W.E., Kingsley P.B., Ogg R.J., Pui M.H. et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int. J. Radiat. Oncol. Biol. Phys. 1996; 36: 1251–61.
42. Wald L.L., Nelson S.J., Day M.R., Noworolski S.E., Henry R.G., Huhn S.L. et al. Serial proton magnetic resonance spectroscopy imaging of glioblastomamultiforme after brachytherapy. J. Neurosurg. 1997; 87: 525–34.
43. Preul M.C., Leblanc R., Caramanos Z., Kasrai R., Narayanan S., Arnold D.L. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can. J. Neurol. Sci. 1998; 25: 13–22.
44. Lin A., Bluml S., Mamelak A.N. Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. J. Neurooncol. 1999; 45: 69–81.
45. Henry R.G., Vigneron D.B., Fischbein N.J., Grant P.E., Day M.R., Noworolski S.M. et al. Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. Am. J. Neuroradiol. 2000; 21: 357–66.
46. Graves E.E., Nelson S.J., Vigneron D.B., Verhey L., McDermott M., Larson D. et al. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. Am. J. Neuroradiol. 2001; 22 (4): 613–24.
47. Rabinov J.D., Lee P.L., Barker F.G., Louis D.N., Harsh G.R., Cosgrove G.R. et al. In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology. 2002; 225: 871–9.
48. Plotkin M., Eisenacher J., Bruhn H., Wurm R., Michel R., Stockham-mer F. et al. 123I-IMT SPECT and 1H MR spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J. Neurooncol. 2004; 70 (1): 49–58.
49. Zeng Q.S., Li C.F., Zhang K., Liu H., Kang X.S., Zhen J.H. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J. Neurooncol. 2007; 84 (1): 63–9.
Review
For citations:
Bakunovich A.V., Sinitsyn V.E., Mershina E.A. CLINICAL USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPY IN BRAIN TUMORS AND ADJACENT TISSUES. Journal of radiology and nuclear medicine. 2014;(1):39-50. (In Russ.) https://doi.org/10.20862/0042-4676-2014-0-1-39-50