Current Clinical Application of Artificial Intelligence in Medical Imaging
https://doi.org/10.20862/0042-4676-2024-105-6-325-334
Abstract
Artificial intelligence (AI) is currently developing very efficiently, and its applications are valuable in many fields of science, including medicine, mainly because of its ability to ensure accuracy, objectivity and automation, in particular, in the diagnostic process. Rapid development of diagnostic technologies provides an opportunity to introduce innovative solutions into modern medicine through the use of AI, which makes it possible to relieve medical workers by speeding up the diagnostic process and improving its quality as well as effectiveness of subsequent special treatment based on its results. This review briefly presents the current state of knowledge and a number of existing AI models applied in everyday practice in medical imaging. AI has great potential to transform X-ray diagnostics and other areas of medicine, especially in the analysis of medical images. Despite the difficulties associated with AI implementation in practice, such as the need for proper staff training and ethical issues, the advantages of its application are very significant. AI can help improve diagnostic accuracy, speed up the diagnostic process itself, and reduce medical costs. Further development of AI technologies combined with the constant cooperation between Russian AI developers and medical professionals will contribute to even greater advances in healthcare, which will undoubtedly benefit both patients and staff of medical institutions.
About the Authors
N. V. NudnovRussian Federation
Nikolay V. Nudnov, Dr. Med. Sc., Professor, Deputy Director for Scientific Work, Head of Research Department of Complex Diagnostics of Diseases and Radiotherapy; Professor, Chair of Radiology and and Nuclear Medicine; Deputy Director for Scientific Work, Professor, Chair of Oncology and Roentgenology
ul. Profsoyuznaya, 86, Moscow, 117997
ul. Barrikadnaya, 2/1, str.1, Moscow, 125993
ul. Miklukho-Maklaya, 6, Moscow, 117198
G. А. Pan’shin
Russian Federation
Georgiy А. Pan’shin, Dr. Med. Sc., Professor, Senior Resеаrcher, Laboratory of Radiation Therapy and Complex Methods of Cancer Treatment, Research Department of Complex Diagnostics of Diseases and Radiotherapy
ul. Profsoyuznaya, 86, Moscow, 117997
References
1. Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discov Artif Intell. 2023; 3: 5. https://doi.org/10.1007/s44163-023-00049-5.
2. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2022; 14(7): 8459–86. https://doi.org/10.1007/s12652-021-03612-z.
3. Hosny A., Parmar C., Quackenbush J., et al. Artificial intelligence in radiology. Nat Rev Cancer. 2018; 18(8): 500–10. https://doi.org/10.1038/s41568-018-0016-5.
4. Waldstein SM, Seeböck P, Donner R, et al. Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning. Sci Rep. 2020; 10: 12954. https://doi.org/10.1038/s41598-020-69814-1.
5. Plested J, Gedeon T. Deep transfer learning for image classification: an overview. arXiv:2205.09904. https://doi.org/10.48550/arXiv.2205.09904.
6. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023; 23(1): 689. https://doi.org/10.1186/s12909-023-04698-z.
7. Sinha A, Dolz J. Multi-scale self-guided attention for medical image segmentation. IEEE J Biomed Health Inform. 2021; 25(1): 121–30. https://doi.org/10.1109/JBHI.2020.2986926.
8. Popescu D, Stanciulescu A, Pomohaci MD, Ichim L. Decision support system for liver lesion segmentation based on advanced convolutional neural network architectures. Bioengineering. 2022; 9(9): 467. https://doi.org/10.3390/bioengineering9090467.
9. Altini N, Brunetti A, Puro E, et al. NDG-CAM: nuclei detection in histopathology images with semantic segmentation networks and grad-CAM. Bioengineering. 2022; 9(9): 475. https://doi.org/10.3390/bioengineering9090475.
10. van de Sande D, Sharabiani M, Bluemink H, et al. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys Imaging Radiat Oncol. 2021; 20: 111–6. https://doi.org/10.1016/j.phro.2021.11.007.
11. Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019; 178: 265–83. https://doi.org/10.1007/978-3-030-16391-4_11.
12. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit Med. 2019; 2: 112. https://doi.org/10.1038/s41746-019-0191-0.
13. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018; 268(1): 70–6. https://doi.org/10.1097/SLA.0000000000002693.
14. Lee W, Shin H., Chang MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol. 2022; 22(1): 147. https://doi.org/10.1186/s12883-022-02670-w.
15. Xu JH, Zhou XM, Ma JL, et al. Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging. Zhonghua Wei Chang Wai Ke Za Zhi. 2020; 23(6): 572–7 (in Chinese). https://doi.org/10.3760/cma.j.cn.441530-20191023-00460.
16. Obuchowicz R, Strzelecki M, Piórkowski A. Clinical applications of artificial intelligence in medical imaging and image processing – a review. Cancers. 2024; 16(10): 1870. https://doi.org/10.3390/cancers16101870.
17. Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: a technology review. Phys Med. 2021; 83: 242–56. https://doi.org/10.1016/j.ejmp.2021.04.016.
18. Khalifa M, Albadawy M. Artificial Intelligence for clinical prediction: exploring key domains and essential functions. Comput Methods Programs Biomed Update. 2024; 5: 100148. . https://doi.org/10.1016/j.cmpbup.2024.100148.
19. Lee GW, Shin H, Chang MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol. 2022; 22(1): 147. https://doi.org/10.1186/s12883-022-02670-w.
20. Abdelrahman K, Shiyovich A, Huck DM, et al. Artificial intelligence in coronary artery calcium scoring detection and quantification. Diagnostics. 2024; 14(2): 125. https://doi.org/10.3390/diagnostics14020125.
21. Muzammil MA, Javid S, Afridi AK, et al. Artificial intelligenceenhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. J Electrocardiol. 2024; 83: 30–40. https://doi.org/10.1016/j.jelectrocard.2024.01.006.
22. Seah JCY, Tang JSN, Kitchen A, et al. Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology. 2019; 290(2): 514–22. https://doi.org/10.1148/radiol.2018180887.
23. Reza-Soltani S, Fakhare Alam L, Debellotte O, et al. The role of artificial intelligence and machine learning in cardiovascular imaging and diagnosis. Cureus. 2024; 16(9): e68472. https://doi.org/10.7759/cureus.68472.
24. Pezel T, Toupin S, Bousson V, et al. A machine learning model using cardiac CT and MRI data predicts cardiovascular events in obstructive coronary artery disease. Radiology. 2025; 314(1): e233030. https://doi.org/10.1148/radiol.233030.
25. Ledenev VV, Solodkiy VA, Nudnov NV, Sotnikov VM. Quantitative characteristics of radiation-induced lung damage in oncological patients during radiotherapy based on RCT data. Medical Visualization. 2022; 26(4): 60–74 (in Russ). https://doi.org/10.24835/1607-0763-1182.]
26. Morozov SP, Vladzimirskiy AV, Gombolevskiy VA, et al. Artificial intelligence in lung cancer screening: assessment of the diagnostic accuracy of the algorithm analyzing low-dose computed tomography. Tuberculosis and Lung Diseases. 2020; 98(8): 24–31 (in Russ). https://doi.org/10.21292/2075-1230-2020-98-8-24-31.
27. Rozhkova NI. Artificial intelligence and systemic biology technologies in oncomammoscreening. Available at: https://rusmammo.ru/tehnologii-iskusstvennogo-intellektai-sistemnoj-biologii-v-onkomammoskrininge-rozhkovanadezhda-ivanovna/ (in Russ) (accessed 12.09.2024).]
28. Solodky VA, Kaprin AD, Nudnov NV, et al. Artificial intelligence in breast cancer screening (literature review). Available at: http://vestnik.rncrr.ru/vestnik/v22/docs/solodkiy_t4.pdf (in Russ) (accessed 12.09.2024).]
29. Solodkiy VA, Kaprin AD, Nudnov NV, et al. Сontemporary medical decision support systems based on artificial intelligence for the analysis of digital mammographic images. Journal of Radiology and Nuclear Medicine. 2023; 104(2): 151–62 (in Russ). https://doi.org/10.20862/0042-4676-2023-104-2-151-162.]
30. Солодкий В.А., Каприн А.Д., Нуднов Н.В. и др. Возможности искусственного интеллекта в оценке риска рака молочной железы на маммографических изображениях (клинические примеры). Вестник Российского научного центра рентгенорадиологии. 2023; 23(1): 24–31. Solodkiy VA, Kaprin AD, Nudnov NV, et al. The possibilities of artificial intelligence in breast cancer risk assessment on mammographic images (clinical examples). Vestnik of the Russian Scientific Center of Roentgenoradiology. 2023; 23(1): 24–31 (in Russ).
31. Quanyang W, Yao H, Sicong W, et al. Artificial intelligence in lung cancer screening: detection, classification, prediction, and prognosis. Cancer Med. 2024; 13(7): e7140. https://doi.org/10.1002/cam4.7140.
32. de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020; 382(6): 503–13. https://doi.org/10.1056/NEJMoa1911793.
33. Huang KL, Wang SY, Lu WC, et al. Effects of low-dose computed tomography on lung cancer screening: a systematic review, meta-analysis, and trial sequential analysis. BMC Pulm Med. 2019; 19(1): 126. https://doi.org/10.1186/s12890-019-0883-x.
34. National Lung Screening Trial Research Team. Lung cancer incidence and mortality with extended follow-up in the National Lung Screening Trial. J Thorac Oncol. 2019; 14(10): 1732–42. https://doi.org/10.1016/j.jtho.2019.05.044.
35. Pastorino U, Sverzellati N, Sestini S, et al. Ten-year results of the multicentric Italian lung detection trial demonstrate the safety and efficacy of biennial lung cancer screening. Eur J Cancer. 2019; 118: 142–8. https://doi.org/10.1016/j.ejca.2019.06.009.
36. Polat G, Halici U, Dogrusoz YS. False positive reduction in lung computed tomography images using convolutional neural networks. arXiv:1811.01424. https://doi.org/10.48550/arXiv.1811.01424.
37. Morozov SP, Vladzimirskiy AV, Gombolevskiy VA, et al. Artificial intelligence in lung cancer screening: assessment of the diagnostic accuracy of the algorithm analyzing low-dose computed tomography. Tuberculosis and Lung Diseases. 2020; 98(8): 24–31 (in Russ). https://doi.org/10.21292/2075-1230-2020-98-8-24-31.
38. WHO position paper on mammography screening. Available at: https://www.who.int/publications/i/item/9789241507936 (accessed 12.09.2024).
39. Wang Z, Zhang X, Wang X, et al. Deep learning techniques for imaging diagnosis of renal cell carcinoma: current and emerging trends. Front Oncol. 2023; 13: 1152622. https://doi.org/10.3389/fonc.2023.1152622.
40. Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer. 2022; 126(1): 4–9. https://doi.org/10.1038/s41416-021-01633-1.
41. Koh DM, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging. Commun Med. 2022; 2: 133. https://doi.org/10.1038/s43856-022-00199-0.
42. Yedavalli VS, Tong E, Martin D, et al. Artificial intelligence in stroke imaging: current and future perspectives. Clin Imaging. 2021; 69: 246–54. https://doi.org/10.1016/j.clinimag.2020.09.005.
43. Soun JE, Chow DS, Nagamine M, et al. Artificial intelligence and acute stroke imaging. AJNR Am J Neuroradiol. 2021; 42(1): 2–11. https://doi.org/10.3174/ajnr.A6883.
44. Lui YW, Chang PD, Zaharchuk G, et al. Artificial intelligence in neuroradiology: current status and future directions. AJNR Am J Neuroradiol. 2020; 41(8): E52–9. https://doi.org/10.3174/ajnr.A6681.
45. Regentova OS, Solodkiy VA, Bozhenko VK, et al. Radiomic data analysis in neurooncology. Vestnik of the Russian Scientific Center of Roentgenoradiology. 2024; 24(2): 69–77 (in Russ).
46. Hussain A, Fareed A, Taseen S. Bone fracture detection-Can artificial intelligence replace doctors in orthopedic radiography analysis? Front Artif Intell. 2023; 6: 1223909. https://doi.org/10.3389/frai.2023.1223909.
47. Dell'Aria A, Tack D, Saddiki N, et al. Radiographic detection of post-traumatic bone fractures: contribution of artificial intelligence software to the analysis of senior and junior radiologists. J Belg Soc Radiol. 2024; 108(1): 44. https://doi.org/10.5334/jbsr.3574.
48. Gurung B, Liu P, Harris PDR, et al. Artificial intelligence for image analysis in total hip and total knee arthroplasty: a scoping review. Bone Joint J. 2022; 104-B(8): 929–37. https://doi.org/10.1302/0301-620X.104B8.BJJ-2022-0120.R2.
49. Nudnov NВ, Korobov AV, Skachkov АА, et al. Evaluation of artificial intelligence effectiveness in detection of lumbosacral spine degenerative diseases. Journal of Radiology and Nuclear Medicine. 2024; 105(1): 20–8 (in Russ). https://doi.org/10.20862/0042-4676-2024-105-1-20-28.
50. Rusakov AS, Tumko VV, Sarbaev RS, et al. A neural network model for detection and classification of central lumbosacral spinal stenosis on MRI scans. Medical Visualization. 2025; 29(1): 102–12 (in Russ). https://doi.org/10.24835/1607-0763-1436.
51. Kim D, Lee JH, Kim SW, et al. Quantitative measurement of pneumothorax using artificial intelligence management model and clinical application. Diagnostics. 2022; 12(8): 1823. https://doi.org/10.3390/diagnostics12081823.
52. Hunter JG, Pierce JD, Gilkeson RC, et al. clinical implementation of an artificial intelligence tool in the detection and management of pneumothoraces in patients with COVID-19. Cureus. 2023; 15(7): e42509. https://doi.org/10.7759/cureus.42509.
53. Mascarenhas Saraiva M, Ribeiro T, Afonso J, et al. Artificial intelligence and capsule endoscopy: automatic detection of small bowel blood content using a convolutional neural network. GE Port J Gastroenterol. 2021; 29(5): 331–8. https://doi.org/10.1159/000518901.
54. Kumar R, Kang FU, Sharma A, et al. Modern applications of artificial intelligence in the detection of diseases of the gastrointestinal tract, liver and pancreas. Curr Med Chem. 2022; 29(1): 66–85. https://doi.org/10.2174/0929867328666210405114938.
55. Cardobi N, Dal Palù A, Pedrini F, et al. An overview of artificial intelligence applications in liver and pancreatic imaging. Cancers. 2021; 13(9): 2162. https://doi.org/10.3390/cancers13092162.
56. Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021; 14(1): 86–93. https://doi.org/10.1111/cts.12884.
57. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022; 39(8): 120. https://doi.org/10.1007/s12032-022-01711-1.
58. Evans W, Meslin EM, Kai J, Qureshi N. Precision medicineare we there yet? A narrative review of precision medicine's applicability in primary care. J Pers Med. 2024; 14(4): 418. https://doi.org/10.3390/jpm14040418.
Review
For citations:
Nudnov N.V., Pan’shin G.А. Current Clinical Application of Artificial Intelligence in Medical Imaging. Journal of radiology and nuclear medicine. 2024;105(6):325-334. (In Russ.) https://doi.org/10.20862/0042-4676-2024-105-6-325-334