Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors
https://doi.org/10.20862/0042-4676-2015-0-6-142-142
Abstract
as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.
About the Authors
V. V. KanyginRussian Federation
MD, PhD, Associate Professor of the Department of Neurosurgery,
Leading Research Associate, Neurosurgeon, Oncologist
A. I. Kichigin
Russian Federation
Trainee Researcher, Neurosurgeon
N. V. Gubanova
Russian Federation
PhD in Biol. Sci., Senior Research Associate
S. Yu Taskaev
Russian Federation
Dr. of Phys. and Math., Leading Research Associate
References
1. Locher G.L. Biological effects and therapeutic possibilities of neutrons. Am. J. Roentgenol. Radium Ther. 1936; 36: 1–13.
2. Agosteo S. et al. Current status of neutron capture therapy. Vienna: IAEA; 2001.
3. Nakagava Y., Pooh K., Kobayashi T. et al. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beam. J. Neuro-Oncol. 2003; 62: 87–99.
4. Nakagava Y., Hatanaka Н. Boron neutron capture therapy: clinical brain tumor studies. J. Neurooncol. 1997; 33: 105–15.
5. Moss R. et al. Requirements for BNCT at a Nuclear Research Reactor – Results from a BNCT Workshop organized by the European Commission in Prague, November 2005//BNCT Workshop organized by the European Commission, Prague, 11–12 Nov. 2005: 582–4.
6. Ohgaki H., Dessen P. et al. Genetic pathways to glioblastoma: a population- based study. Cancer Res. 2004; 64 (19): 6892–9.
7. Van Meir E.G., Hadjipanayis C.G. et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. Cancer J. Clin. 2010; 60 (3): 166–93.
8. Kita D., Yonekawa Y. et al. PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 2007; 113 (3): 295–302.
9. Ekstrand A.J., Sugawa N. et al. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl. Acad. Sci. USA. 1992; 89 (10): 4309–13.
10. Hulleman E., Helin K. Molecular mechanisms in gliomagenesis. Adv. Cancer Res. 2005; 94: 1–27.
11. Riesterer O., Milas L. et al. Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J. Clin. Oncol. 2007; 25 (26): 4075–83.
12. Hopewell J.W., Gorlia T. et al. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Appl. Radiat. Isot. 2011; 69 (12): 1737–40.
13. Barth F., Vicente M.G.H., Harling O.K. et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology. 2012; 7: 146.
14. Soloway A.H., Tjarks W., Barnum B.A., Rong F.G., Barth R.F., Codogni I.M., Wilson J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998; 98: 1515–62.
15. Kubota R., Yamada S. et al. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo. Br. J. Cancer. 1993; 67 (4): 701–5.
16. Yang F.Y., Chen Y.W. et al. Boron neutron capture therapy for glioblastoma multiforme: enhanced drug delivery and antitumor effect following blood-brain barrier disruption induced by focused ultrasound. Future Oncol. 2012; 8 (10): 1361–9.
17. Kraft S.L., Gavin P.R. et al. Borocaptate sodium: a potential boron delivery compound for boron neutron capture therapy evaluated in dogs with spontaneous intracranial tumors. Proc. Natl. Acad. Sci. USA. 1992; 89 (24): 11973–7.
18. Semioshkin A., Laskova J., Zhidkova O., Godovikov I., Starikova Z., Bregadze V.I., Gabel D. Synthesis and structure of novel closo-dodecaborate-based glycerols. J. Organomet. Chem. 2010; 695: 370–4.
19. Olsson Р. et al. Uptake of a boronated epidermal growth factor-dextran conjugate in CHO xenografts with and without human EGFreceptor expression. Anticancer Drug. Des. 1998; 13: 279–89.
20. Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug. Deliv. Rev. 2011; 63 (3): 136–51.
21. Doijad R.C., Bhambere D.S., Manvi F.V., Deshmukh N.V. Formulation and characterization of vesicular drug delivery system for anti-HIV drug. J. Global. Pharma Technology. 2009; 1 (1): 94–100.
22. Maurer N., Fenske D.B., Cullis P.R. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther. 2001; 1 (5): 1–25.
23. Hawthorne M.F., Shelly K. Liposomes as drug delivery vehicles for boron agents. J. Neurooncol. 1997; 33 (1–2): 53–8.
24. Nakamura H., Miyajima Y. et al. Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem. Commun. (Camb). 2004; 17: 1910–1.
25. Ueno M., Ban H.S. et al. Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med. Chem. 2010; 18 (9): 3059–65.
26. Pan X.Q., Wang H. et al. Boroncontaining folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem. 2002; 13 (3): 435–42.
27. Pan X., Wu G. et al. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem. 2007; 18 (1): 101–8.
28. Kueffer P.J., Maitz C.A., Khan A.A., Schuster S.A., Shlyakhtina N.I., Jalisatgi S.S. et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proceed. Nation. Acad. Sci. USA. 2013; 110 (16): 6512–7.
29. Tanaka H., Sakurai Y., Suzuki M. et al. Experimental verification of beam characteristics for cyclotronbased epithermal neutron source (C-BENS). Applied Radiat. Isotop. 2011; 69: 1642–5.
30. Yoshioka M. et al. Construction of accelerator-based BNCR facility at Ibaraki Neutron Medical Research Center. 16th International Congress on Neutron Capture Therapy, June 14–19, 2014, Helsinki, Finland (www.icnct16.org): 66.
31. Bayanov B. et al. Accelerator based neutron source for the neutroncapture and fast neutron therapy at hospital. Nucl. Instrum. Meth. Phys. Res. A. 1998; 413 (2–3): 397–426.
32. Таскаев С.Ю. Ускорительный источник эпитепловых нейтро-нов: Дис. … д-ра физ.-мат. наук. Новосибирск; 2014. URL: http://www. inp.nsk.su/news/defences/Taskaev_diss.pdf/ Taskaev S.Yu.Accelerator based epithermal neutronsource: Dr. of Phys. And Math. sci. Diss. Novosibirsk; 2014. URL: http://www.inp.nsk.su/news/defences/Taskaev_diss.pdf (in Russian).
33. Kasatov D. et al. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation. J. Instrument. 2014; 9: 12016.
34. Таскаев C.Ю., Каныгин В.В. Система формирования пучка нейтронов. Патент РФ на изобретение № 2540124 от 16.12.2014./ Taskaev S.Yu., Kanygin V.V. Neutron beam shaping assembly. Patent RF № 2540124; 16.12.2014 (in Russian).
Review
For citations:
Kanygin V.V., Kichigin A.I., Gubanova N.V., Taskaev S.Yu. Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors. Journal of radiology and nuclear medicine. 2015;(6):36-42. (In Russ.) https://doi.org/10.20862/0042-4676-2015-0-6-142-142