Preview

Journal of radiology and nuclear medicine

Advanced search

Prospects for the Application of Artificial Intelligence in Mammography

https://doi.org/10.20862/0042-4676-2024-105-5-282-286

Abstract

Today in the world there is a growing interest in the interpretation of radiologic, in particular mammographic, data using artificial intelligence (AI). In the presented review of scientific literature, based on the most significant studies of recent years an attempt was made to determine the place of AI in radiologic diagnosis of breast cancer. It is shown that in the future, AI can become an integral part of breast cancer mammographic screening, although at the moment the ethical and legal issues of its use have not been fully resolved.

About the Author

Siuzanna F. Saibu
Pirogov Russian National Research Medical University
Russian Federation

Siuzanna F. Saibu, 6th Year Student, Faculty of Medicine,

1, Ostrovityanova, Moscow, 117513.



References

1. Tabár L, Vitak B, Chen HH, et al. Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality. Cancer. 2001; 91(9): 1724–31. https://doi.org/10.1002/1097-0142(20010501)91:9<1724::aid-cncr1190>3.0.co;2-v.

2. Ren W, Chen M, Qiao Y, Zhao F. Global guidelines for breast cancer screening: a systematic review. Breast. 2022; 64: 85–99. https://doi.org/10.1016/j.breast.2022.04.003.

3. Talley CH, Yang L, Williams KP. Breast cancer screening paved with good intentions: application of the informationmotivation-behavioral skills model to racial/ethnic minority women. J Immigr Minor Health. 2017; 19(6): 1362–71. https://doi.org/10.1007/s10903-016-0355-9.

4. Weiyu W, Siau K. Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: a review and research agenda. In: Research anthology on machine learning techniques, methods, and applications. Chapter 76. Engineering Science Reference; 2022: 1460–81.

5. Kufel J, Bargieł-Łączek K, Kocot S, et al. What is machine learning, artificial neural networks and deep learning? – Examples of practical applications in medicine. Diagnostics. 2023; 13(15): 2582. https://doi.org/10.3390/diagnostics13152582.

6. Logan J, Kennedy PJ, Catchpoole D. A review of the machine learning datasets in mammography, their adherence to the FAIR principles and the outlook for the future. Sci Data. 2023; 10(1): 595. https://doi.org/10.1038/s41597-023-02430-6.

7. Ayer T, Chen Q, Burnside ES. Artificial neural networks in mammography interpretation and diagnostic decision making. Comput Math Methods Med. 2013; 2013: 832509. https://doi.org/10.1155/2013/832509.

8. Pesapane F, Trentin C, Ferrari F, et al. Deep learning performance for detection and classification of microcalcifications on mammography. Eur Radiol Exp. 2023; 7(1): 69. https://doi.org/10.1186/s41747-023-00384-3.

9. Lamb LR, Lehman CD, Gastounioti A, et al. Artificial intelligence (AI) for screening mammography, from the AJR special series on AI applications. AJR Am J Roentgenol. 2022; 219(3): 369–80. https://doi.org/10.2214/AJR.21.27071.

10. Al Muhaisen S, Safi O, Ulayan A, et al. Artificial intelligencepowered mammography: navigating the landscape of deep learning for breast cancer detection. Cureus. 2024; 16(3): e56945. https://doi.org/10.7759/cureus.56945.

11. Uzun Ozsahin D, Ikechukwu Emegano D, Uzun B, Ozsahin I. The systematic review of artificial intelligence applications in breast cancer diagnosis. Diagnostics. 2022; 13(1): 45. https://doi.org/10.3390/diagnostics13010045.

12. Yala A, Lehman C, Schuster T, et al. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019; 292(1): 60–6. https://doi.org/10.1148/radiol.2019182716.

13. Yoon JH, Kim EK. Deep learning-based artificial intelligence for mammography. Korean J Radiol. 2021; 22(8): 1225–39. https://doi.org/0.3348/kjr.2020.1210.

14. Bahl M, Do S. Artificial intelligence for breast cancer screening: trade-offs between sensitivity and specificity. Radiol Artif Intell. 2024; 6(3): e240184. https://doi.org/10.1148/ryai.240184.

15. Васильев Ю.А., Тыров И.А., Владзимирский А.В. и др. Двойной просмотр результатов маммографии с применением технологий искусственного интеллекта: новая модель организации массовых профилактических исследований. Digital Diagnostics. 2023; 4(2): 93–104. https://doi.org/10.17816/DD321423. [Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, et al. Double-reading mammograms using artificial intelligence technologies: a new model of mass preventive examination organization. Digital Diagnostics. 2023; 4(2): 93–104 (in Russ). https://doi.org/10.17816/DD321423.]

16. Павлович П.И., Бронов О.Ю., Капнинский А.А. и др. Сравнительное исследование результатов анализа данных цифровой маммографии системы на основе искусственного интеллекта «Цельс» и врачей-рентгенологов. Digital Diagnostics. 2021; 2(2S): 22–3. https://doi.org/10.17816/DD83184. [Pavlovich PI, Bronov OY, Kapninsky AA, et al. Comparative study of the digital mammography data analysis system based on artificial intelligence “Celsus” and radiologists. Digital Diagnostics. 2021; 2(2S): 22–3 (in Russ). https://doi.org/10.17816/DD83184.]

17. Васильев Ю.А., Владзимирский А.В., Арзамасов К.М. и др. Первые 10000 маммографических исследований, выполненных в рамках услуги «описание и интерпретация данных маммографического исследования с использованием искусственного интеллекта». Менеджер здравоохранения. 2023; 8: 54–67. https://doi.org/10.21045/1811-0185-2023-8-54-67. [Vasiliev YA, Vladzimirsky AV, Arzamasov KM, et al. The first 10,000 mammography exams performed as part of the “Description and interpretation of mammography data using artificial intelligence” service. Manager Zdravookhranenia. 2023; 8: 54–67 (in Russ). https://doi.org/10.21045/1811-0185-2023-8-54-67.]

18. Wong DJ, Gandomkar Z, Wu WJ, et al. Artificial intelligence and convolution neural networks assessing mammographic images: a narrative literature review. J Med Radiat Sci. 2020; 67(2): 134–42. https://doi.org/10.1002/jmrs.385.

19. Helal M, Khaled R, Alfarghaly O, et al. Validation of artificial intelligence contrast mammography in diagnosis of breast cancer: relationship to histopathological results. Eur J Radiol. 2024; 173: 111392. https://doi.org/10.1016/j.ejrad.2024.111392.

20. Carriero A, Groenhoff L, Vologina E, et al. Deep learning in breast cancer imaging: state of the art and recent advancements in early 2024. Diagnostics. 2024; 14(8): 848. https://doi.org/10.3390/diagnostics14080848.

21. Mračko A, Vanovčanová L, Cimrák I. Mammography datasets for neural networks-survey. J Imaging. 2023; 9(5): 95. https://doi.org/10.3390/jimaging9050095.


Review

For citations:


Saibu S.F. Prospects for the Application of Artificial Intelligence in Mammography. Journal of radiology and nuclear medicine. 2024;105(5):282-286. (In Russ.) https://doi.org/10.20862/0042-4676-2024-105-5-282-286

Views: 1348


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)