Radiomics Analysis of Ultrasound Images of Peripheral Nerves in Young Patients with Type 1 Diabetes Mellitus in Comparison with Healthy Controls
https://doi.org/10.20862/0042-4676-2024-105-5-245-254
Abstract
Background. Early diagnosis of diabetic polyneuropathy in childhood is an urgent healthcare problem. Radiomics analysis of ultrasound images is a promising diagnostic tool for assessing the morphological structure of peripheral nerves in type 1 diabetes mellitus (T1DM).
Objective: to evaluate the possibility of using radiomics analysis in the diagnosis of peripheral nerve changes based on ultrasound images in T1DM patients of young age.
Material and methods. A total of 126 ultrasound images of peripheral nerves of the upper and lower limbs in T1DM patients aged 10–17 years (n=10) and controls (n=10) (four locations, greyscale mode) were studied.
Results. Radiomics analysis revealed differences in the texture of peripheral nerves of the limbs in young T1DM patients when compared with healthy individuals.
Conclusion. The method of radiomics analysis is a promising diagnostic tool for assessing changes in peripheral nerves in children and adolescents with T1DM.
About the Authors
Svetlana V. Fomina,Russian Federation
Svetlana V. Fomina, Cand. Med. Sc., Associate Professor, Head of Department – Doctor of Ultrasound Diagnostics,
2, Moskovskiy trakt, Tomsk, 634050.
Iuliia G. Samoilova,
Russian Federation
Iuliia G. Samoilova, Dr. Med. Sc., Professor, Chief of Chair of Pediatrics with a Course of Endocrinology,
2, Moskovskiy trakt, Tomsk, 634050.
Maksim O. Pleshkov,
Russian Federation
Maksim O. Pleshkov, Cand. Med. Sc., Junior Researcher, Department of Medical Software Development, Scientific and Technological Center “Digital Medicine and Cyberphysics”,
2, Moskovskiy trakt, Tomsk, 634050.
Dmitry А. Kudlay
Russian Federation
Dmitry А. Kudlay, Dr. Med. Sc., Corr. Member of RAS, Professor, Chair of Pharmacology, Institute of Pharmacy; Deputy Dean for Innovation and Translational Affairs, Faculty of Fundamental Medicine, Professor, Chair of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine; Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology No. 71,
8, str. 2, ul. Trubetskaya, Moscow, 119048;
1, Leninskie Gory, Moscow, 119991;
24, Kashirskoe shosse, Moscow, 115522.
Еvgeniy А. Voronin,
Russian Federation
Еvgeniy А. Voronin, Laboratory Researcher, Department of Medical Software Development, Scientific and Technological Center “Digital Medicine and Cyberphysics”,
2, Moskovskiy trakt, Tomsk, 634050.
Dmitriy A. Kachanov,
Russian Federation
Dmitriy A. Kachanov, Assistant Professor, Chair of Pediatrics with a Course of Endocrinology,
2, Moskovskiy trakt, Tomsk, 634050.
Ivan V. Tolmachev,
Russian Federation
Ivan V. Tolmachev, Cand. Med. Sc., Head of Scientific and Technological Center “Digital Medicine and Cyberphysics”,
2, Moskovskiy trakt, Tomsk, 634050.
Marina V. Koshmeleva,
Russian Federation
Marina V. Koshmeleva, Cand. Med. Sc., Associate Professor, Chair of Pediatrics with a Course of Endocrinology,
2, Moskovskiy trakt, Tomsk, 634050.
Ekaterina I. Trifonova,
Russian Federation
Ekaterina I. Trifonova, Assistant Professor, Chair of Pediatrics with a Course of Endocrinology,
2, Moskovskiy trakt, Tomsk, 634050.
References
1. Goyal K, Aggarwal P, Gupta M. Ultrasound evaluation of peripheral nerves of the lower limb in diabetic peripheral neuropathy. Eur J Radiol. 2021; 145: 110058. https://doi.org/10.1016/j.ejrad.2021.110058.
2. Tandon A, Khullar T, Maheshwari S, et al. High resolution ultrasound in subclinical diabetic neuropathy: a potential screening tool. Ultrasound. 2021; 29(3): 150–61. https://doi.org/10.1177/1742271X20958034.
3. Kallinikou D, Soldatou A, Tsentidis C, et al. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab Res Rev. 2019; 35(7): e3178. https://doi.org/10.1002/dmrr.3178.
4. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 2021; 17: 400–20. https://doi.org/10.1038/s41574-021-00496-z.
5. Никитин С.С., Муртазина А.Ф., Дружинин Д.С. Блок проведения возбуждения по периферическому нерву как электрофизиологический феномен: обзор литературы. Нервно-мышечные болезни. 2019; 9(1): 12–23. https://doi.org/10.17650/2222-8721-2019-9-1-12-23. [Nikitin SS, Murtazina AF, Druzhinin DS. Conduction block as an electrophysiological phenomenon: a review of the literature. Neuromuscular Diseases. 2019; 9(1): 12–23 (in Russ). https://doi.org/10.17650/2222-8721-2019-9-1-12-23.]
6. Фомина С.В., Завадовская В.Д., Самойлова Ю.Г. и др. Возможности ультразвуковой эластографии периферических нервов у детей с сахарным диабетом 1 типа. Медицинская визуализация. 2024; 28(4): 133–41. https://doi.org/10.24835/1607-0763-1437. [Fomina SV, Zavadovskaya VD, Samoilova IG, et al. Possibilities of ultrasound elastography of peripheral nerves in children with type 1 diabetes mellitus. Medical Visualization. 2024; 28(4): 133–41 (in Russ). https://doi.org/10.24835/1607-0763-1437.]
7. Senarai T, Pratipanawatr T, Yurasakpong L, et al. Cross-sectional area of the tibial nerve in diabetic peripheral neuropathy patients: a systematic review and meta-analysis of ultrasonography studies. Medicina. 2022; 58(12): 1696. https://doi.org/10.3390/medicina58121696.
8. Данилова М.Г., Салтыкова В.Г., Усенко Е.Е., Абоян И.А. Ультразвуковое исследование локтевого нерва у детей различных возрастных групп. Ультразвуковая и функциональная диагностика. 2019; 2: 61–79. https://doi.org/10.24835/1607-0771-2019-2-61-79. [Danilova MG, Saltykova VG, Usenko EE, Aboian IA. Ulnar nerve ultrasound in different age groups children. Ultrasound & Functional Diagnostics. 2019; 2: 61–79 (in Russ). https://doi.org/10.24835/1607-0771-2019-2-61-79.]
9. Hatt M, Le Rest CC, Tixier F, et al. Radiomics: data are also images. J Nucl Med. 2019; 60(Suppl 2): 38S–44S.
10. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017; 14(12): 749–62. https://doi.org/10.1038/nrclinonc.2017.141.
11. McCague C, Ramlee S, Reinius M, et al. Introduction to radiomics for a clinical audience. Clin Radiol. 2023; 78(2): 83– 98. https://doi.org/10.1016/j.crad.2022.08.149.
12. Jiang H, Chen L, Zhao YJ, et al. machine learning-based ultrasomics for predicting subacromial impingement syndrome stages. J Ultrasound Med. 2022; 41(9): 2279–85. https://doi.org/10.1002/jum.15914.
13. Jia Y, Yang J, Zhu Y, et al. Ultrasound-based radiomics: current status, challenges and future opportunities. Med Ultrason. 2022; 24(4): 451–60. https://doi.org/10.11152/mu-3248.
14. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30(9): 1323–41. https://doi.org/10.1016/j.mri.2012.05.001.
15. Van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017; 77(21): e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.
Review
For citations:
Fomina, S.V., Samoilova, I.G., Pleshkov, M.O., Kudlay D.А., Voronin, Е.А., Kachanov, D.A., Tolmachev, I.V., Koshmeleva, M.V., Trifonova, E.I. Radiomics Analysis of Ultrasound Images of Peripheral Nerves in Young Patients with Type 1 Diabetes Mellitus in Comparison with Healthy Controls. Journal of radiology and nuclear medicine. 2024;105(5):245-254. (In Russ.) https://doi.org/10.20862/0042-4676-2024-105-5-245-254