Preview

Journal of radiology and nuclear medicine

Advanced search

Scintigraphy in Thyroid Nodular Pathology

https://doi.org/10.20862/0042-4676-2022-103-4-6-108-116

Abstract

Thyroid scintigraphy is a method that formed more than 60 years ago and retains its importance for the diagnosis and assessment of the risk of nodular malignancy. The review examines the use of the scintigraphic method in functional and metabolic assessment of nodular goiter. Prerequisites for functional thyroid nodes screening with short-lived 99mTc-pertechnetate are outlined. Information is provided on the principles of its preparation and pharmacokinetics, as well as variants of the thyroid nodes functional activity, their possible malignant potential and indications for metabolic screening. The characteristic of metabolic activity allows to assess the risk of functionally “cold” thyroid nodes malignancy. The main stages of the use of nonspecific tumorotropic radiopharmaceuticals, the mechanism of their accumulation and metabolism in the thyroid tumors, the possibilities of the differential diagnosis of various types of nodular formations are presented. Modern views on the diagnostic capabilities of two-phase scintigraphy with 99mTс-methylisobutylisonitrile are reflected taking into account the relationship of radiopharmaceuticals accumulation with factors of proliferative activity and ultrastructural cell types, a variant of oncocytic pathology and multidrug-resistant protein expression.

About the Authors

S. P. Mironov
Myasnikov Research Institute of Clinical Cardiology, Chyazov National Medical Research Center for Cardiology
Russian Federation

Sergey P. Mironov, Dr. Med. Sc., Professor, Radiologist, Laboratory of Radioisotope Diagnostics and Therapy, Department of Radionuclide Diagnostics and Positron Emission Tomography

ul. Tretya Cherepkovskaya, 15а, Moscow, 121552



V. B. Sergienko
Myasnikov Research Institute of Clinical Cardiology, Chyazov National Medical Research Center for Cardiology
Russian Federation

Vladimir B. Sergienko, Dr. Med. Sc., Professor, Head of Department of Radionuclide Diagnostics and Positron Emission Tomography

ul. Tretya Cherepkovskaya, 15а, Moscow, 121552



References

1. Vanushko VE, Fadeev VV. Nodular goiter (clinical lecture). Endocrine Surgery. 2012; 4: 11–6 (in Russ).

2. Horvath E, Majilis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009; 94(5): 1748–51. https://doi.org/10.1210/jc.2008-1724.

3. Evans RD. Early history (1936–1946) of nuclear medicine in thyroid studies at Massachusetts General Hospital. Med Phys. 1975; 2(3): 105–9. https://doi.org/10.1118/1.594176.

4. Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996; 26(3): 155–64. https://doi.org/10.1016/s0001-2998(96)80020-1.

5. Hertz BE, Schuller KE. Saul Hertz, MD (1905–1950): a pioneer in the use of radioactive iodine. Endocr Pract. 2010; 16(4): 713–5. https://doi.org/10.4158/EP10065.CO.

6. Blahd WH. Ben Cassen and the development of the rectilinear scanner. Semin Nucl Med. 1996; 26(3): 165–70. https://doi.org/10.1016/s0001-2998(96)80021-3.

7. Croll MN. Historic perspective. Semin Nucl Med. 1994; 24(1): 3–10. https://doi.org/10.1016/S0001-2998(05)80245-4.

8. Gottschalk A. The early years with Hal Anger. Semin Nucl Med. 1996; 26(3): 171–9. https://doi.org/10.1016/s0001-2998(96)80022-5.

9. Kasatkin YuN, Smirnov VF, Мikerova TM, Mironov SP. Clinical application of short-lived radionuclides. Мoscow; 1981: 64 pp (in Russ). Литература [References]

10. Steigman J, Richards P. Chemistry of technetium 99m. Semin Nucl Med. 1974; 4(3): 269–79. https://doi.org/10.1016/s0001-2998(74)80014-0.

11. Charkes ND. Scintigraphie evaluation of nodular goiter. Semin Nucl Med. 1971; 1(3): 316–33. https://doi.org/10.1016/s0001-2998(71)80005-3.

12. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016; 26(1): 1–133. https://doi.org/10.1089/thy.2015.0020.

13. Lau LW, Ghaznavi S, Frolkis AD, et al. Malignancy risk of hyperfunctioning thyroid nodules compared with non-toxic nodules: systematic review and a meta-analysis. Thyroid Res. 2021; 14(3): 1–16. https://doi.org/10.1186/s13044-021-00094-1.

14. Hung GU, Tsai SC, Kao CH, et al. Disparate results between 1–131 and Tc-99m pertechnetate owing to administration of iodine-containing radiographic contrast material. Semin Nucl Med. 2000; 30(2): 147–8. https://doi.org/10.1053/nm.2000.5415.

15. Hedayati N, McHenry CR. The clinical significance of an isofunctioning thyroid nodule. Am Surg. 2003; 69(4): 311–5.

16. Ram R. Cold nodule – thyroid scan. Semin Nucl Med. 1981; 11(4): 320–1. https://doi.org/10.1016/S0001-2998(81)80032-3.

17. Cases JA, Surks MI. The changing role of scintigraphy in the evaluation of thyroid nodules. Semin Nucl Med. 2000; 30(2): 81–7. https://doi.org/10.1053/nm.2000.4598.

18. Thomas CG Jr, Pepper FD, Owen J. Differentiation of malignant from benign lesions of the thyroid gland using complementary scanning with 75Selenomethionine and radionuclide. Ann Surg. 1969; 170(3): 396–408. https://doi.org/10.1097/00000658-196909010-00008.

19. Weinstein MB, Ashkar FS, Caron CD. 75Se selenomethionine as a scanning agent for the differential diagnosis of the cold thyroid nodule. Semin Nucl Med. 1971; 1(3): 390–6. https://doi.org/10.1016/s0001-2998(71)80010-7.

20. Larson SM. Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med. 1978; 8(3): 193–203. https://doi.org/10.1016/s0001-2998(78)80028-2.

21. Heidendal GA, Roos P, Thijs LG, Wiener JD. Evaluation of cold areas on the thyroid scan with 67Ga-citrate. J Nucl Med. 1975; 16(8): 793–4.

22. Koutras DA, Pandos PG, Sfontouris J, et al. Thyroid scanning with gallium-67 and cesium-131. J Nucl Med. 1968; 17(4): 268–71.

23. Van Amsterdam JA, Kluin-Nelemans JC, van Eck-Smit BL, Pauwels EK. Role of 67Ga scintigraphy in localization of lymphoma. Ann Hematol. 1996; 72(4): 202–7. https://doi.org/10.1007/s002770050161.

24. Murray IP, Stewart RD, Indyk JS. Thyroid scanning with 131Cs. Br Med J. 1970; 12(4): 653–6. https://doi.org/10.1136/bmj.4.5736.653.

25. Buraggi GL, Di Pietro S, Doci R, Rodari A. Clinical examination and 131 Cs scanning in the diagnosis of cold nodules of the thyroid. Tumori. 1976; 62(4): 397–405.

26. Madeddu G, Casu AR, Tanda F, et al. Role of 131Cs scan in preoperative diagnosis of nonfunctioning thyroid nodules. Am Surg. 1981; 47(11): 479–82.

27. Sessler MJ, Geck P, Maul FD, et al. New aspects of cellular thallium uptake: TI+-Na+-2C1(-)-cotransport is the central mechanism of ion uptake. Nuklearmedizin. 1986: 25(1): 24–7.

28. Palermo F, Cadel A, Bordignon G, et al. 201T1 for the differential diagnosis of cold thyroid nodules. La Ricerca Clin Lab. 1977; 7: 289–95.

29. Tonami N, Bunko H, Michigishi T, et al. Clinical application of 201Tl scintigraphy in patients with cold thyroid nodules. Clin Nucl Med. 1978; 3(6): 217–21. https://doi.org/10.1097/00003072-197806000-00004.

30. Bleichrodt RP, Vermey A, Piers DA, de Langen ZJ. Early and delayed thallium 201 imaging diagnosis of patients with cold thyroid nodules. Cancer. 1987; 60(11): 2621–3. https://doi.org/10.1002/1097-0142(19871201)60:11<2621::aidcncr2820601108>3.0.co;2-r .

31. Palermo F, Cadel A, Bordignon G, et al. Diagnostic efficacy of dynamic radiothallium uptake in thyroid nodules determined by computer-assisted scintigraphy. Reevaluation of a radioisotopic procedure. Nuklearmedizin. 1989; 28(4): 114–9.

32. Nakada K, Katoh C, Kanegae K, et al. The role of 201T1 scintigraphy in evaluating proliferative activity in thyroid neoplasms. Ann Nucl Med. 1996; 10(1): 41–8. https://doi.org/10.1007/BF03165052.

33. Yamamoto Y, Okumura Y, Sato S, et al. Differentiation of thyroid nodules using tl-201 scintigraphy quantitative analysis and fine-needle aspiration biopsy. Acta Med Okayama. 2004; 58(2): 75–83. https://doi.org/10.18926/AMO/32098.

34. Erdil TY, Özker K, Kabasakal L, et al. Correlation of technetium-99m MIBI and thallium-201 retention in solitary cold thyroid nodules with postoperative histopathology. Eur J Nucl Med. 2000; 27(6): 713–20. https://doi.org/10.1007/s002590050567.

35. Maffioli L, Steens J, Pauwels E, Bombardieri E. Applications of 99mTc-sestamibi in oncology. Tumori. 1996; 82(1): 12–21.

36. Hendrikse NH, Franssen EJ, van der Graaf WT, et al. 99mTcsestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998; 77(3): 353–8. https://doi.org/10.1038/bjc.1998.57.

37. Saggiorato E, Angusti T, Rosas R, et al. 99mTc-MIBI imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med. 2009; 50(11): 1785–93. https://doi.org/10.2967/jnumed.109.064980.

38. Sarikaya A, Huseyinova G, Irfanogï ME, et al. The relationship between 99Tcm-sestamibi uptake and ultrastructural cell types of thyroid tumours. Nucl Med Commun. 2001; 22(1): 39–44. https://doi.org/10.1097/00006231-200101000-00006.

39. Boi F, Lai ML, Deias C, et al. The usefulness of 99mTc-SestaMIBI scan in the diagnostic evaluation of thyroid nodules with oncocytic cytology. Eur J Endocrinol. 2003; 149(6): 493–8. https://doi.org/10.1530/eje.0.1490493.

40. Treglia G, Caldarella C, Saggiorato E, et al. Diagnostic performance of 99mTc-MIBI scan in predicting the malignancy of thyroid nodules: a meta-analysis. Endocrine. 2013; 44(1): 70–8. https://doi.org/10.1007/s12020-013-9932-z.

41. Kim SJ, Lee SW, Jeong SY, et al. Diagnostic performance of Tc-99m MIBI for differentiation of malignant thyroid nodules: a systematic review and metaanalysis. Thyroid. 2018; 28(10): 1339–48. https://doi.org/10.1089/thy.2018.0072.

42. Baumgarten J, Happel C, Ackermann H, Grünwald F. Evaluation of intra- and interobserver agreement of Technetium-99m-sestamibi imaging in cold thyroid nodules. Nuklearmedizin. 2017; 56: 132–8 (in German). https://doi.org/10.3413/Nukmed-0869-16-12.

43. Benderradji H, Beronc A, Wémeaua JL, et al. Quantitative dual isotope 123iodine/99mTc-MIBI scintigraphy: a new approach to rule out malignancy in thyroid nodules. Ann Endocrinol. 2021; 82(2): 83–91. https://doi.org/10.1016/j.ando.2021.03.003.

44. Giovanella L, Suriano S, Maffioli M, et al. 99mTc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck. 2010; 32(5): 607–11. https://doi.org/10.1002/hed.21229.

45. Campennì A, Giovanella L, Siracusa M, et al. 99mTc-methoxyisobutyl-isonitrile scintigraphy. Is a useful tool for assessing the risk of malignancy in thyroid nodules with indeterminate fine-needle cytology. Thyroid. 2016; 26(8): 1101–9. https://doi.org/10.1089/thy.2016.0135.

46. Giovanella L, Avram AM, Iakovou I, et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur J Nucl Med Mol Imaging. 2019; 46(12): 2514–25. https://doi.org/10.1007/s00259-019-04472-8.


Review

For citations:


Mironov S.P., Sergienko V.B. Scintigraphy in Thyroid Nodular Pathology. Journal of radiology and nuclear medicine. 2022;103(4-6):108-116. (In Russ.) https://doi.org/10.20862/0042-4676-2022-103-4-6-108-116

Views: 681


ISSN 0042-4676 (Print)
ISSN 2619-0478 (Online)