Impact of Emphysema Subtypes and Volume on Lung Ventilation and Gas Exchange Functions as Evidenced by Computed Tomography
https://doi.org/10.20862/0042-4676-2021-102-6-349-358
Abstract
Objective: to characterize the relationship between the subtype and volume of pulmonary emphysema on the indicators of lung ventilation and gas exchange functions.
Material and methods. The data of radiation and functional studies were analyzed in 50 patients. The inclusion criteria were chronic obstructive pulmonary disease and emphysema, which had been diagnosed by computed tomography (CT) and confirmed by two radiologists; comprehensive pulmonary function studies, including spirometry and body plethysmography, were performed; diffusion capacity was measured using a single-breath method, involving inhalation of carbon monoxide, and a breath hold. Patients with primary pulmonary emphysema, any history of pulmonary surgery, and emphysema concurrent with other lung X-ray syndromes (consolidation, cavity) were excluded. CT was performed with a 1-mm thick slice and standard scanning parameters on Toshiba tomographs (Japan). Pulmonary function was tested using a MasterScreen Body Diffusion expert diagnostic unit (VIASYS Healthcare, Germany) in accordance with the criteria for correct pulmonary functional tests proposed by a joint group of experts from the American Thoracic Society and the European Respiratory Society. Volumetric analysis of emphysema was performed using the Lung Volume Analysis software package (Toshiba, Japan). In the study, there was a predominance of male patients (n = 42 (84%)), mainly in the 61-70 age group.
Results. The isolated type of emphysema was rare: centrilobular and paraseptal emphysemas were seen in 3 (6%) and 2 (4%) patients, respectively. The mixed type of emphysema was detected in 90% of cases; 33 (66%) patients having a predominant centrilobular component constituted a large proportion. It was determined that as the volume of emphysema increased, the patency of the airways worsened, the static pulmonary volumes increased, the lungs were hyperinflated, pulmonary gas exchange worsened, the bronchial resistance slightly increased during calm breathing. No statistically significant results were found from the point of view of correlations between the volume of emphysema and other parameters of pulmonary function.
Conclusion. An increase in the volume of emphysema deteriorates pulmonary function; the greatest contribution to the overall picture is made by the patients with a mixed type of emphysema with a predominance of the centrilobular component.
About the Authors
N. A. GrivaRussian Federation
Nadezhda A. Griva, Postgraduate
Ligovskiy prospekt, 2–4, Saint-Petersburg, 191036
P. V. Gavrilov
Russian Federation
Pavel V. Gavrilov, Cand. Med. Sc., Leading Researcher, Head of Radiology Department; Associate Professor, Scientific Clinical and Educational Center “Radiology and Nuclear Medicine”, Institute of High Medical Technologies
Ligovskiy prospekt, 2–4, Saint-Petersburg, 191036
Universitetskaya nab., 7–9, Saint-Petersburg, 199034
I. A. Nikitina
Russian Federation
Inna A. Nikitina, Resident
Ligovskiy prospekt, 2–4, Saint-Petersburg, 191036
L. D. Kiryukhina
Russian Federation
Larisa D. Kiryukhina, Cand. Med. Sc., Leading Researcher, Head of Department of Clinical Physiology
Ligovskiy prospekt, 2–4, Saint-Petersburg, 191036
A. N. Narkevich
Russian Federation
Artem N. Narkevich, Dr. Med. Sc., Associate Professor, Dean of Faculty of Medicine, Psychology and Pharmacy, Head of Department of Medical Cybernetics and Computer Science, Head of Laboratory of Medical Cybernetics and Health Management
ul. Partizana Zheleznyaka, 1, Krasnoyarsk Territory, Krasnoyarsk, 660022
E. G. Sokolovich
Russian Federation
Evgeniy G. Sokolovich, Dr. Med. Sc., Professor, Deputy Director for Science; Professor, Chair of Hospital Surgery
Ligovskiy prospekt, 2–4, Saint-Petersburg, 191036
Universitetskaya nab., 7–9, Saint-Petersburg, 199034
References
1. Хроническая обструктивная болезнь легких. Клинические рекомендации. Российское респираторное общество. URL: https://spulmo.ru/upload/federal_klinicheskie_rekomendaciy_hobl.pdf (дата обращения 03.09.2021). [Chronic obstructive pulmonary disease. Clinical guidelines. Russian Respiratory Society. Available at: https://spulmo.ru/upload/federal_klinicheskie_rekomendaciy_hobl.pdf (in Russ.) (accessed 03.09.2021).]
2. Диагностика и лечение пациентов с хронической обструктивной болезнью легких и артериальной гипертензией. Национальные клинические рекомендации. URL: https://www.rnmot.ru/public/uploads/RNMOT/clinical/2017/%D0%A5%D0%9E%D0%91%D0%9B%20%D0%B8%20%D0%90%D0%93%20%D0%9C%D0%B0%D0%BB%D1%8F%D0%B2%D0%B8%D0%BD_250618.pdf (дата обращения 03.09.2021). [Diagnosis and treatment of patients with chronic obstructive pulmonary disease and arterial hypertension. National clinical guidelines. Available at: https://www.rnmot.ru/public/uploads/RNMOT/clinical/2017/%D0%A5%D0%9E%D0%91%D0%9B%20%D0%B8%20%D0%90%D0%93%20%D0%9C%D0%B0%D0%BB%D1%8F%D0%B2%D0%B8%D0%BD_250618.pdf (in Russ.) (accessed 03.09.2021).]
3. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am J Respir Crit Care Med. 2017; 195(5): 557–582. http://doi.org/10.1164/rccm.201701-0218PP.
4. Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc. 2018; 93(10): 1488–502. http://doi.org/10.1016/j.mayocp.2018.05.026.
5. Fischer AM, Varga-Szemes A, van Assen M, et al. Comparison of artificial intelligence-based fully automatic chest CT emphysema quantification to pulmonary function testing. Am J Roentgenol. 2020; 214(5): 1065–71. http://doi.org/10.2214/AJR.19.21572.
6. Nakano Y, Muro S, Sakai H, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function. Am J Respir Crit Care Med. 2000; 162(3 Pt 1): 1102–8. http://doi.org/10.1164/ajrccm.162.3.9907120.
7. De Boer E, Nijholt IM, Jansen S, et al. Optimization of pulmonary emphysema quantification on CT scans of COPD patients using hybrid iterative and post processing techniques: correlation with pulmonary function tests. Insights Imaging. 2019; 10(1): 102. http://doi.org/10.1186/s13244-019-0776-9.
8. Lynch DA, Moore CM, Wilson C, et al. CT-based visual classification of emphysema: association with mortality in the COPD gene Study. Radiology. 2018; 288(3): 859–66. http://doi.org/10.1148/radiol.2018172294.
9. Гаврилов П.В., Грива Н.А., Торкатюк Е.А. Оценка воспроизводимости программного анализа объема эмфиземы: сравнительный анализ результатов при оценке различными программными продуктами. Лучевая диагностика и терапия. 2021; 11(4): 37–43. https://doi.org/10.22328/2079-5343-2020-11-4-37-43. [Gavrilov PV, Griva NA, Torkatyuk EA. Evaluation of the interchangeability of volumetric lung emphysema quantification: comparative analysis of the evaluation results using different software products. Diagnostic Radiology and Radiotherapy. 2021; 11(4): 37–43 (in Russ.). https://doi.org/10.22328/2079-5343-2020-11-4-37-43.]
10. Шейх Ж.В., Николаев Э.В., Тюрин И.Е. и др. Хроническая обструктивная болезнь легких с эмфиземой и гигантскими буллами у курильщика. Вестник рентгенологии и радиологии. 2018; 99(4): 204–10. https://doi.org/10.20862/0042-4676-2018-99-4-204-210. [Sheykh ZV, Nikolaev EV, Tyurin IE, et al. Chronic obstructive pulmonary disease with emphysema and giant bullae in a smoker. Journal of Radiology and Nuclear Medicine. 2018; 99(4): 204–10 (in Russ.). https://doi.org/10.20862/0042-4676-2018-99-4-204-210.]
11. Горбунов Н.А., Лаптев В.Я. Комплексная лучевая диагностика хронической обструктивной болезни легких. Пульмонология. 2020; 6: 95–100. https://doi.org/10.18093/0869-0189-2008-0-6-95-100. [Gorbunov NA, Laptev VY. Combined radiological diagnosis of chronic obstructive pulmonary disease. Pulmonologiya. 2020; 6: 95–100 (in Russ.). https://doi.org/10.18093/0869-0189-2008-0-6-95-100.]
12. Willemink MJ, de Jong PA, Leiner T, et al. Schilham Iterative reconstruction techniques for computed tomography. Part 1: technical principles. Eur Radiol. 2013; 23(6): 1623–31. https://doi.org/10.1007/s00330-012-2765-y.
13. den Harder AM, de Boer E, Lagerweij SJ, et al. Emphysema quantification using chest CT: influence of radiation dose reduction and reconstruction technique. Eur Radiol Exp. 2018; 2: 30. https://doi.org/10.1186/s41747-018-0064-3.
14. Baumueller S, Winklehner A, Karlo C, et al. Low-dose CT of the lung: potential value of iterative reconstructions. Eur Radiol. 2012; 22(12): 2597–606. https://doi.org/10.1007/s00330-012-2524-0.
15. Hosny A, Parmar C, Quackenbush J, et al. Aerts Artificial intelligence in radiology. Nat Rev Cancer. 2018; 18(8): 500–10. https://doi.org/10.1038/s41568-018-0016-5.
16. Feldhaus FW, Theilig DC, Hubner RH, et al. Quantitative CT analysis in patients with pulmonary emphysema: is lung function influenced by concomitant unspecific pulmonary fibrosis? Int J Chron Obstruct Pulmon Dis. 2019; 14: 1583–93. https://doi.org/10.2147/COPD.S204007.
17. Šileikienė V, Urbonas M, Matačiūnas M, Norkūnienė J, et al. Relationships between pulmonary function test parameters and quantitative computed tomography measurements of emphysema in subjects with chronic obstructive pulmonary disease. Acta Med Litu. 2017; 24(4): 209–18. https://doi.org/10.6001/actamedica.v24i4.3616.
Review
For citations:
Griva N.A., Gavrilov P.V., Nikitina I.A., Kiryukhina L.D., Narkevich A.N., Sokolovich E.G. Impact of Emphysema Subtypes and Volume on Lung Ventilation and Gas Exchange Functions as Evidenced by Computed Tomography. Journal of radiology and nuclear medicine. 2021;102(6):349-358. (In Russ.) https://doi.org/10.20862/0042-4676-2021-102-6-349-358