Comparsion of Liver and Spleen Elastometry Features
https://doi.org/10.20862/0042-4676-2021-102-4-247-254
Abstract
The review presents data on the comparison of the features of liver and spleen stiffness measurements and those on the impact of various conditions on the measurement results (the type of a sensor used, food intake, number of measurements, patient position, breathing phase, etc.). Literature has been sought in the PubMed and eLibrary databases. In particular, the liver and spleen stiffness values vary differently at the height of inspiration and expiration. This is due to organ engorgement with a change in intrathoracic and intraabdominal pressures, as well as to a reduction in splenic arterial flow during exhalation. The review gives published data on liver and spleen stiffness values in healthy volunteers. The spleen is a stiffer organ than the liver. The different liver and spleen stiffness is explained by the features of blood supply (the spleen receives the most blood supply from the intensive-flow artery; the liver does from the portal vein). The reasons for increasing the stiffness of these organs in both health and disease are described. Estimation of liver stiffness can be used to diagnose cirrhosis and portal hypertension. That of spleen stiffness can help in the diagnosis of portal hypertension and in the indirect diagnosis of the presence of esophageal varices and the nature of a splenic lesion.
About the Authors
S. V. MorozovRussian Federation
Sergey V. Morozov, Postgraduate
ul. А. Nevskogo, 14, Kalinigrad, 236016
V. А. Izranov
Russian Federation
Vladimir А. Izranov, Dr. Med. Sc., Professor, Chief of Chair of Fundamental Medicine, Medical Institute
ul. А. Nevskogo, 14, Kalinigrad, 236016
References
1. Cho YS, Lim S, Kim Y, et al. Spleen stiffness measurement using 2-dimensional shear wave elastography: the predictors of measurability and the normal spleen stiffness value. J Ultrasound Med. 2019; 38(2): 423–31. https://doi.org/10.1002/jum.14708.
2. Balakrishnan M, Souza F, Muñoz C, et al. Liver and spleen stiffness measurements by point shear wave elastography via acoustic radiation force impulse: intraobserver and interobserver variability and predictors of variability in a US population. J Ultrasound Med. 2016; 35(11): 2373–80. https://doi.org/10.7863/ultra.15.10056.
3. Ковалев А.В., Борсуков А.В. Возможности усовершенствованной методики эластографии сдвиговых волн селезенки в многопрофильном стационаре. Ученые записки Орловского государственного университета. Серия: естественные, технические и медицинские науки. 2015; 4(67): 325–9. [Kovalev AV, Borsukov AV. Features of improved methodologies of elastography of shear waves spleen in multidisciplinary hospital. Scientific Notes of the Orel State University. Series: Natural, Technical and Medical Sciences. 2015; 4(67): 325–9 (in Russian).]
4. Elkrief L, Rautou PE, Ronot M, et al. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology. 2015; 275(2): 589–98. https://doi.org/10.1148/radiol.14141210.
5. Yoon JH, Lee JM, Han JK, Choi BI. Shear wave elastography for liver stiffness measurement in clinical sonographic examinations: evaluation of intraobserver reproducibility, technical failure, and unreliable stiffness measurements. J Ultrasound Med. 2014; 33(3): 437–47. https://doi.org/10.7863/ultra.33.3.437.
6. Huang Z, Zheng J, Zeng J, et al. Normal liver stiffness in healthy adults assessed by real-time shear wave elastography and factors that influence this method. Ultrasound Med Biol. 2014; 40(11): 2549–55. https://doi.org/10.1016/j.ultrasmedbio.2014.05.008. Литература [References]
7. Castéra L, Foucher J, Bernard PH, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010; 51(3): 828–35. https://doi.org/10.1002/hep.23425.
8. Изранов В.А., Степанян И.А., Мартинович М.В. ARFIэластометрия печени у здоровых добровольцев: стандартизация методики. Вестник Балтийского федерального университета им. И. Канта. Естественные и медицинские науки. 2016; 2: 77–85. [Izranov VА, Stepanyan IА, Martinovich МV. ARFI-liver elastometry in healthy volunteers: standardization of the method. Bulletin of Kant Baltic Federal University. Natural and Medical Sciences. 2016; 2: 77–85 (in Russian).]
9. Степанян И.А., Кобинец Ю.В., Изранов В.А., Овчинников О.И. Диффузные изменения печени: оценка эффективности диагностики методом стандартизованной ARFI-эластометрии. Лучевая диагностика и терапия. 2018; 1: 30–5. https://doi.org/10.22328/2079-5343-2018-9-1-30-35. [Stepanyan IA, Kobinets YuV, Izranov VA, Ovchinnikov OI. Diffuse liver changes: assessment of ARFI-elastometry diagnostics efficacy. Diagnostic Radiology and Radiotherapy. 2018; 1: 30–5 (in Russian).] https://doi.org/10.22328/2079-5343-2018-9-1-30-35.]
10. Sirli R, Bota S, Sporea I, et al. Liver stiffness measurements by means of supersonic shear imaging in patients without known liver pathology. Ultrasound Med Biol. 2013; 39(8): 1362–7. https://doi.org/10.1016/j.ultrasmedbio.2013.03.021.
11. Феоктистова Е.В., Пыков М.И., Амосова А.А. и др. Применение ARFI-эластографии для оценки жeсткости печени у детей различных возрастных групп. Ультразвуковая и функциональная диагностика. 2013; 6: 46–55. [Feoktistova EV, Pykov MI, Amosova AA, et al. ARFI elastography in liver stiffness assessment in healthy children of different age. Ultrasound and Functional Diagnostics. 2013; 6: 46–55 (in Russian).]
12. Ferraioli G, Tinelli C, Dal Bello B, et al. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology. 2012; 56(6): 2125–33. https://doi.org/10.1002/hep.25936.
13. Leung VY, Shen J, Wong VW, et al. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology. 2013; 269(3): 910–8. https://doi.org/10.1148/radiol.13130128.
14. Lee MJ, Kim MJ, Han KH, Yoon CS. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging. Eur J Radiol. 2013; 82(6): e290–4. https://doi.org/:10.1016/j.ejrad.2013.01.018.
15. Palabiyik FB, Inci E, Turkay R, Bas D. Evaluation of liver, kidney, and spleen elasticity in healthy newborns and infants using shear wave elastography. J Ultrasound Med. 2017; 36(10): 2039–45. https://doi.org/10.1002/jum.14202.
16. Pawluś A, Inglot M, Chabowski M, et al. Shear wave elastography (SWE) of the spleen in patients with hepatitis B and C but without significant liver fibrosis. Br J Radiol. 2016; 89(1066): 20160423. https://doi.org/10.1259/bjr.20160423.
17. Cho YS, Lim S, Kim Y, et al. Spleen stiffness measurement using 2-Dimensional shear wave elastography: the predictors of measurability and the normal spleen stiffness value. J Ultrasound Med. 2019; 38(2): 423–31. https://doi.org/10.1002/jum.14708.
18. Albayrak E, Server S. The relationship of spleen stiffness value measured by shear wave elastography with age, gender, and spleen size in healthy volunteers. J Med Ultrason (2001). 2019; 46(2): 195–9. https://doi.org/10.1007/s10396-019-00929-3.
19. Burak Özkan M, Bilgici MC, Eren E, Caltepe G. Diagnostic accuracy of point shear wave elastography in the detection of portal hypertension in pediatric patients. Diagn Interv Imaging. 2018; 99(3): 151–6. https://doi.org/10.1016/j.diii.2017.10.009.
20. Karlas T, Lindner F, Tröltzsch M, Keim V. Assessment of spleen stiffness using acoustic radiation force impulse imaging (ARFI): definition of examination standards and impact of breathing maneuvers. Ultraschall Med. 2014; 35(1): 38–43. https://doi.org/10.1055/s-0033-1356230.
21. Cañas T, Fontanilla T, Miralles M, et al. Normal values of spleen stiffness in healthy children assessed by acoustic radiation force impulse imaging (ARFI): comparison between two ultrasound transducers. Pediatr Radiol. 2015; 45(9): 1316–22. https://doi.org/10.1007/s00247-015-3306-z.
22. Giuffrè M, Macor D, Masutti F, et al. Evaluation of spleen stiffness in healthy volunteers using point shear wave elastography. Ann Hepatol. 2019; 18(5): 736–41. https://doi.org/10.1016/j.aohep.2019.03.004.
23. Pawluś A, Inglot MS, Szymańska K, et al. Shear wave elastography of the spleen: evaluation of spleen stiffness in healthy volunteers. Abdom Radiol (NY). 2016; 41(11): 2169–74. https://doi.org/10.1007/s00261-016-0834-4.
24. Yun MH, Seo YS, Kang HS, et al. The effect of the respiratory cycle on liver stiffness values as measured by transient elastography. J Viral Hepat. 2011; 18(9): 631–6. https://doi.org/10.1111/j.1365-2893.2010.01376.x.
25. Ling W, Lu Q, Quan J, et al. Assessment of impact factors on shear wave based liver stiffness measurement. Eur J Radiol. 2013; 82(2): 335–41. https://doi.org/10.1016/j.ejrad.2012.10.004.
26. Franchi-Abella S, Corno L, Gonzales E, et al. Feasibility and diagnostic accuracy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology. 2016; 278(2): 554–62. https://doi.org/10.1148/radiol.2015142815.
27. Cui XW, Friedrich-Rust M, De Molo C, et al. Liver elastography, comments on EFSUMB elastography guidelines 2013. World J Gastroenterol. 2013; 19(38): 6329–47. https://doi.org/10.3748/wjg.v19.i38.6329.
28. Barr RG, Ferraioli G, Palmeri ML, et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Radiology. 2015; 276(3): 845–61. https://doi.org/10.1148/radiol.2015150619.
29. Kjærgaard M, Thiele M, Jansen C, et al. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal. PLoS One. 2017; 12(4): e0173992. https://doi.org/10.1371/journal.pone.0173992.
30. Madhok R, Tapasvi C, Prasad U, et al. Acoustic radiation force impulse imaging of the liver: measurement of the normal mean values of the shearing wave velocity in a healthy liver. J Clin Diagn Res. 2013; 7(1): 39–42. https://doi.org/10.7860/JCDR/2012/5070.2665.
31. Batur A, Alagoz S, Durmaz F, et al. Measurement of spleen stiffness by shear-wave elastography for prediction of splenomegaly etiology. Ultrasound Q. 2019; 35(2): 153–6. https://doi.org/10.1097/RUQ.0000000000000403.
32. Madhusudhan KS, Kilambi R, Shalimar, et al. Measurement of splenic stiffness by 2D-shear wave elastography in patients with extrahepatic portal vein obstruction. Br J Radiol. 2018; 91(1092): 20180401. https://doi.org/10.1259/bjr.20180401.
33. Procopet B, Berzigotti A, Abraldes JG, et al. Real-time shearwave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol. 2015; 62(5): 1068–75. https://doi.org/10.1016/j.jhep.2014.12.007.
34. Chang S, Kim MJ, Kim J, Lee MJ. Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study. Ultraschall Med. 2013; 34(3): 260–5. https://doi.org/10.1055/s-0032-1313008.
35. Yamanaka N, Kaminuma C, Taketomi-Takahashi A, Tsushima Y. Reliable measurement by virtual touch tissue quantification with acoustic radiation force impulse imaging: phantom study. J Ultrasound Med. 2012; 31(8): 1239–44. https://doi.org/10.7863/jum.2012.31.8.1239.
36. Гурбатов С.Н., Демин И.Ю., Прончатов-Рубцов Н.В. Ультразвуковая эластография: аналитическое описание различных режимов и технологий, физическое и численное моделирование сдвиговых характеристик мягких биологических тканей. Н. Новгород: Нижегородский госуниверситет; 2015. [Gurbatov SN, Demin IYu, Pronchatov-Rubtsov NV. Ultrasound elastography: analytical description of various modes and technologies, physical and numerical modeling of shear characteristics of soft biological tissues. Nizhny Novgorod; 2015 (in Russian).]
37. Karagiannakis DS, Voulgaris T, Koureta E, et al. Role of spleen stiffness measurement by 2D-shear wave elastography in ruling out the presence of high-risk varices in cirrhotic patients. Dig Dis Sci. 2019; 64(9): 2653–60. https://doi.org/10.1007/s10620-019-05616-4.
38. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. 12-е изд. СПб.: Издательский дом СПбМАПО; 2010. [Prives МG, Lysenkov NК, Bushkovich VI. Human anatomy. 12th ed. Saint Petersburg; 2010 (in Russian).]
39. Куликов В.П. Основы ультразвукового исследования сосудов. М.: Видар-М; 2015. [Kulikov VP. Basics of ultrasound examination of blood vessels. Мoscow: Vidar-M; 2015 (in Russian).]
40. Кузнецов С.Л., Мушкамбаров Н.Н., Горячкина В.Л. Атлас по гистологии, цитологии и эмбриологии. 2-е изд. М.: ООО «Медицинское информационное агентство»; 2010. [Kuznetsov SL, Mushkambarov NN, Goryachkina V.L. Atlas of histology, cytology and embryology. 2nd ed. Мoscow: Meditsinskoye informatsionnoye agentstvo; 2010 (in Russian).]
41. Rifai K, Cornberg J, Bahr M, et al. ARFI elastography of the spleen is inferior to liver elastography for the detection of portal hypertension. Ultraschall Med. 2011; 32 Suppl 2: E24–30. https://doi.org/10.1055/s-0031-1281771.
Review
For citations:
Morozov S.V., Izranov V.А. Comparsion of Liver and Spleen Elastometry Features. Journal of radiology and nuclear medicine. 2021;102(4):247-254. (In Russ.) https://doi.org/10.20862/0042-4676-2021-102-4-247-254