Assessment of Accuracy in Calculating Hemodynamic Parameters and Left Ventricular Mass According to ECG-Synchronized Myocardial Perfusion Scintigraphic Data: Comparison with Cardiac Multislice Computed Tomography
https://doi.org/10.20862/0042-4676-2019-100-3-152-160
Abstract
Objective. To assess accuracy in calculating the values of end-diastolic and end-systolic volumes (EDV and ESV), ejection fraction (EF), and left ventricular (LV) mass, which are obtained according to ECG-synchronized myocardial perfusion scintigraphy (ECG-MPS) on a CZT camera versus those of cardiac multislice computed tomography (MSCT).
Material and methods. Thirty-four patients (mean age, 62 ± 5 years) with suspected coronary heart disease or its previously established diagnosis were examined. All the patients underwent MSCT coronary angiography and myocardial perfusion scintigraphy with 99mTc-methyxy-isobutyl-isonitrile. For a comparative analysis, the investigators used the EDV, ESV, FV and LV mass values determined by ECG-MPS at rest and cardiac MSCT. The studies were conducted on a 64-slice SPECT/CT hybrid scanner (Discovery 570c, GE Healthcare, USA).
Results. The analysis of the results obtained by both methods revealed statistically significant differences in the values of EDV (MSCT: 168 (145–210) ml; ECG-MPS: 112 (94–141) ml; p < 0.05), ESV (MSCT: 72 (49–83) ml; ECG-MPS: 44 (32–66) ml; p < 0.05), and LV mass (MSCT: 123 (107–143) g; ECG-MPS: 140 (124–168) g; p < 0.05). There were no significant differences in LV EF (MSCT: 64 (54–69)%; ECG-MPS: 61 (50–66)%; p > 0.05). There was a statistically significant correlation between the values of EDV, ESV, and LV mass (r = 0.81; r = 0.78; r = 0.82, respectively, p < 0.05) and a mean correlation of LV EF (r = 0.66; p < 0.05). The Bland–Altman analysis showed that the values of EDV, ESV, and LV mass had statistically significant differences. The consistency limits for the indicators were as follows: EDV, 9–105 ml; ESV, 9–55 ml; LV mass, 51.6–20.7 g. There was a measurement consistency only for EF (consent limits, 16.9–18.4%; p < 0.05). Linear regression equations were calculated, which allow determination of exact values for the volume indices and LV mass according ECG-MPS data.
Conclusion. The scintigraphic method versus MSCT yields significantly smaller volumes (EDV and ESV) and higher LV mass. The ECG-MPS values for EDV, ESV, EF, and LV mass have a statistically significant strong correlation with MSCT findings. At the same time, a good consistency of measurements was found only for LV EF.
Keywords
About the Authors
V. V. SaushkinRussian Federation
Viktor V. Saushkin - Cand. Med. Sc., Senior Researcher, Cardiology Research Institute.
ul. Kievskaya, 111a, Tomsk, 634012.
K. V. Zavadovskiy
Russian Federation
Konstantin V. Zavadovskiy - Dr. Med. Sc., Head of Laboratory of Radionuclide Methods of Study, Cardiology Research Institute.
ul. Kievskaya, 111a, Tomsk, 634012.
References
1. Singh P., Bhatt B., Pawar S.U., Kamra A., Shetye S., Ghorpade M. Role of myocardial perfusion study in differentiating ischemic versus nonischemic cardiomyopathy using quantitative parameters. Indian. J. Nucl. Med. 2018; 33 (1): 32-8.
2. Opie L.H., Commerford P.J., Gersh B.J., Pfeffer M.A. Contro-versies in ventricular remodelling. Lancet. 2006; 367: 356-67.
3. Lima E.G., Carvalho F.P.C., Linhares Filho J.P.P., Pitta F.G., Serrano C.V. Jr. Ischemic left ventricle systolic dysfunction: an evidence-based approach in diagnostic tools and therapeutics. Rev. Assoc. Med. Bras. (1992). 2017; 63 (9): 793-800.
4. Abdi-Ali A., Miller R.J.H., Southern D., Zhang M., Mikami Y., Knudtson M. et al. LV mass independently predicts mortality and need for future revascularization in patients undergoing diagnostic coronary angiography. JACC Cardiovasc. Imaging. 2017. DOI: 10.1016/j.jcmg.2017.04.012
5. Pouleur A.C., de Waroux J.B.P., Pasquet A., Gerber B.L., Ge'rard O., Allain P. et al. Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart. 2008; 94: 1050-7.
6. Schepis T., Gaemperli O., Koepfli P., Valenta I., Strobel K., Brunner A. et al. Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J. Nucl. Med. 2006; 47: 1288-94.
7. Gimelli A., Liga R., Magro S., Novo S., Pedrinelli R., Petronio A.S. et al. Evaluation of left ventricular mass on cadmium-zinctelluride imaging: validation against cardiac magnetic resonance. J. Nucl. Cardiol. 2017. Available at: https://link.springer.com/article/10.1007%2Fs12350-017-1086-6
8. Giorgetti A., Masci P.G., Marras G., Rustamova Y.K., Gimelli A., Genovesi D. et al. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40: 1869-75.
9. Songy B., Lussato D., Guernou M., Queneau M., Geronazzo R. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin. Nucl. Med. 2011; 36: 776-80.
10. Morishima I., Okumura K., Tsuboi H., Morita Y., Takagi K., Yoshida R. et al. Impact of basal inferolateral scar burden determined by automatic analysis of 99mTc-MIBI myocardial perfusion SPECT on the long-term prognosis of cardiac resynchronization therapy. Europace. 2017; 19: 573-80.
11. Gebhard C., Buechel R.R., Stahli B.E., Gransar H., Achenbach S., Berman D.S. et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study. Eur. Heart. J. Cardiovasc. Imaging. 2017; 18: 990-1000.
12. Al-Mallah M.H., Aljizeeri A., Villines T.C., Srichai M.B., Alsaileek A. Cardiac computed tomography in current cardiology guidelines. J. Cardiovasc. Comput. Tomogr. 2015; 9: 514-23.
13. Asferg C., Usinger L., Kristensen T.S., Abdulla J. Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and metaanalysis. Eur. J. Radiol. 2012; 81: e757-762.
14. Abbara S., Blanke P., Maroules C.D., Cheezum M., Choi A.D., Han B.K. et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J. Cardiovasc. Comput. Tomogr. 2016; 10: 435-49.
15. Zavadovskiy K.V., Saushkin V.V., Pan'kova A.N., Lishmanov Yu.B. Methodological features of gated blood pool spect data acquisition, imaging processing and results interpretation. Radiologiya - Praktika (Radiology - Practice). 2011; 6: 75-83 (in Russ.).
16. Ansheles A.A. Specific features of interpretation of myocardial perfusion single-photon emission computed tomography with computed tomographic absorption correction. Journal of Radiology and Nuclear Medicine. 2014; 95 (2): 5-20 (in Russ.).
17. Sergienko V.B., Ansheles A.A. Radionuclide diagnostics in cardiology. In: Chazov E.I. (Ed.) The guide to cardiology. In 4th Vol. Moscow: Praktika; 2014; 2: 571-612 (in Russ.).
18. Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2013; 34: 2949-3003.
19. Reyes E., Wiener S., Underwood S.R., European Council of Nuclear Cardiology. Myocardial perfusion scintigraphy in Europe 2007: a survey of the European Council of Nuclear Cardiology. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39: 160-4.
20. Cochet H., Bullier E., Gerbaud E., Durieux M., Godbert Y., Lederlin M. et al. Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: initial validation versus cardiac MR. J. Nucl. Med. 2013; 54: 556-63.
21. Bax J.J., Lamb H., Dibbets P., Pelikan H., Boersma E., Viergever E.P. et al. Comparison of gated single-photon emission computed tomography with magnetic resonance imaging for evaluation of left ventricular function in ischemic cardiomyopathy. Am. J. Cardiol. 2000; 86: 1299-305.
22. Nakajima K., Okuda K., Nystrom K., Richter J., Minarik D., Wakabayashi H. et al. Improved quantification of small hearts for gated myocardial perfusion imaging. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40: 1163-70.
23. Kaufmann P.A. Measurement of left ventricular volumes and function using O-15-labeled carbon monoxide gated PET. J. Nucl. Cardiol. 2005; 12: 620-1.
24. Kondo C., Watanabe E., Momose M., Fukushima K., Abe K., Hagiwara N., Sakai S. In vivo validation of gated myocardial SPECT imaging for quantification of small hearts: comparison with cardiac MRI. EJNMMIRes. 2016; 6 (1): 9.
25. Suzuki Y., Matsumoto N., Nakano Y., Miki T., Igarashi Y., Sato Y. et al. Motion-frozen myocardial perfusion database obtained from Japanese population shows same tendency of count distribution of the American datasets. J. Nucl. Cardiol. 2009; 16: 662.
26. Zavadovskiy K.V., Mishkina A.I., Mochula A.V., Lishmanov Yu.B. The method for correction of motion artefacts to improve myocardial perfusion imaging. REJR. 2017; 7 (2): 56-64 (in Russ.). DOI: 10.21569/2222-7415-2017-7-2-56-64
Review
For citations:
Saushkin V.V., Zavadovskiy K.V. Assessment of Accuracy in Calculating Hemodynamic Parameters and Left Ventricular Mass According to ECG-Synchronized Myocardial Perfusion Scintigraphic Data: Comparison with Cardiac Multislice Computed Tomography. Journal of radiology and nuclear medicine. 2019;100(3):152-160. (In Russ.) https://doi.org/10.20862/0042-4676-2019-100-3-152-160