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Abstract

Background. Accurate identification and analysis of lung nodules via computed tomography are pivotal for
lung cancer diagnosis and the detection of genetic alterations, such as epidermal growth factor receptor
(EGFR) mutations. While conventional radiomics has become a cornerstone of medical imaging, its predictive
power for determining EGFR mutation status remains limited, necessitating innovative approaches to
improve diagnostic reliability.

Objective: to enhance the accuracy of EGFR mutation status prediction in lung nodules by introducing and
integrating novel texture-based radiomics features into conventional radiomics analysis.

Material and methods. Three novel radiomic features were developed: Adaptive Texture Contrast (ATC),
Directional Texture Uniformity (DTU), and Co-occurrence of Texture Transitions (CTT). They were designed to
capture complex texture patterns associated with EGFR mutations. Integrating these features, a classification
model was employed to differentiate EGFR mutant from wild-type lung nodules.

Results. The incorporation of ATC, DTU, and CTT into the radiomics feature set improved the classification
accuracy by 4%. The Minimum Redundancy Maximum Relevance (MRMR) feature selection method further
validated the significance of these features, ranking them as the top contributors to the model’s predictive
performance.

Conclusion. The findings underscore the potential of advanced texture analysis in improving the diagnostic
capabilities of radiomics for lung nodule classification. By enabling more accurate predictions of EGFR
mutations, the study supports the advancement of personalized medicine and targeted treatment strategies
in lung cancer, highlighting the importance of continuous innovation in feature engineering.
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Pesiome

AKTyanbHOCTb. TouHas MAeHTUDUKALMS M aHANIU3 TEFOYHBIX Y3€KOB C MOMOLLbI KOMMbOTEPHOM TOMOrpadum
MMeIoT peLlatoLlee 3HavYeHne A9 AMArHOCTUKM paka NIerkux U BbISIBEHWUS FreHETUYECKUX U3MEHEHWIA, TaKMX
Kak MyTauuu peuentopa anuaepManbHoro daktopa pocta (epidermal growth factor receptor, EGFR). Xots
TPaAMLUMOHHAs pafMOMMKa CTaNa OCHOBOM MeAMLIMHCKOM BU3yanu3aLum, ee NporHoCTMYecKas LLeHHOCTb ANs
onpeneneHus ctatyca Mytaumu EGFR octaeTcs orpaHuyeHHoM, 4To TpebyeT MHHOBALMOHHbBIX NMOAXOAOB A5
MOBbILIEHUS HAAEXKHOCTU AUATHOCTUKM.

Lienb: noBbICUTb TOYHOCTb MPOrHO3MPOBaHMS cTaTyca MyTaumu EGFR B neroyHbix y3enkax nyteM BHeLpeHUs
M MHTErpaLmm HOBbIX TEKCTYPHbIX PAAMOMMUYECKMX MPU3HAKOB B TPAAULMOHHbIA PaAMOMUYECKUI aHaNK3.
Martepuan n Metoabl. PazpaboTaHbl TpU HOBbIX PaAMOMUYECKMX NPU3HAKA: afaNTUBHbIA KOHTPACT TEKCTYPbI
(Adaptive Texture Contrast, ATC), HanpaBneHHas ogHoponHocTb TekcTypbl (Directional Texture Uniformity,
DTU) n coBMecTHas BcTpeyaeMocTb nepexonos TekcTypbl (Co-occurrence of Texture Transitions, CTT). Oxu
npefHa3HavyeHbl 414 BbIIBNEHWUS CNOXHbIX TEKCTYPHbIX NAaTTEPHOB, CBA3aHHbIX € MyTaumammn EGFR. C ucnone-
30BaHWEM 3TUX MPU3HAKOB MPUMEHSETCS KNaccMdUKaLMOHHAA MoLeNb A5 PA3IMYEHNUS NErOYHbIX Y3e1KOB
c myTaumen EGFR ot y3enkoB aukoro tmna.

Pesynbtatbl. Bkntouenne ATC, DTU 1 CTT B Habop paaMOMMYECKUX NMPU3HAKOB MOBbICMIO0 TOYHOCTb K1accu-
durkaumn Ha 4%. MeTop, oT6Opa NPU3HAKOB KMUHUMYM M3BbITOYHOCTU, MaKCUMYM peneBaHTHOCTMY (Minimum
Redundancy Maximum Relevance, MRMR) gononHuTenbHO NoATBEPAUS 3HAYMMOCTb AAHHbBIX MPU3HAKOB,
onpenenvB UX OCHOBHOM BKNaA B MPOrHOCTUYECKYIO 3PPEKTUBHOCTb MOLENY.

3aknoueHue. Pe3ynbraThl UCCEA0BaHMS YKa3bIBAKOT HA NOTEHLMAN NePeLoBOro aHann3a TeKCTyp B yayyLleHUn
[AMarHOCTUYECKMX BO3MOXHOCTEN PafMOMUKM AN KNACCUDUKALMM NNErOYHbIX y3eNKOB. [TonyyeHHble AaHHble
obecneuymBatoT Honee ToUHOE NpPOrHo3vpoBaHue MyTaumin EGFR, cnocobCTBYOT pa3BUTUIO NepCoHaNm3u-
POBAHHOM MeAMLMHbI U TapreTHbIX CTpaTernii Ne4eHns paka Nerkux, NogyepkuBas BaKHOCTb MOCTOSHHbIX
MHHOBALMIA B UHXEHEPUM MPU3HAKOB.

KnioueBble cnoBa: knaccudumkaLms nerovHbix y3enkos; Mytaumsa EGFR; pagnomuka; aHanus TekcTyp; paspa-
60TKa NPU3HAKOB; BbIYNCIUTENbHASA AUATHOCTUKA; NEPCOHANM3MPOBAHHAA MEAMLMHA; MALLMHHOE 00yYeHue;
otbop npusHakos MRMR.
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Introduction / BBegeHue

Lung cancer remains the leading cause of can-
cer mortality worldwide, with non-small cell lung can-
cer (NSCLC) accounting for the majority of diagnoses.
Among genetic alterations linked to NSCLC, mutations
in the epidermal growth factor receptor (EGFR) gene
have emerged as key biomarkers due to their critical
role in guiding targeted therapies. Detecting EGFR
mutations in lung nodules is pivotal for determining
prognosis and tailoring treatment strategies, as these
mutations significantly influence therapeutic response
and patient survival [1].

The evolution of precision oncology has inten-
sified demand for non-invasive tools capable of de-

coding tumor biology at the molecular level. Ra-
diomics — a multidisciplinary approach combining
medical imaging with advanced data analytics — ad-
dresses this need by translating standard medical im-
ages into quantitative descriptors. These descriptors,
spanning shape, intensity, texture, and higher-order
statistical metrics, enable a granular characterization
of tumor heterogeneity and spatial complexity, sur-
passing conventional visual assessment [2-5].

The potential of radiomics extends beyond mere
phenotypic characterization; it encompasses the pre-
dictive modeling of genetic mutations, such as those
affecting the EGFR gene. This capability is particularly
significant given the heterogeneous nature of lung
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cancer, where tumors with identical histological clas-
sifications may exhibit divergent genetic profiles and,
consequently, respond differently to targeted thera-
pies. By correlating specific radiomic signatures with
the presence of EGFR mutations, researchers aim to
develop non-invasive biomarkers that can reliably pre-
dict mutation status. Such biomarkers would not only
streamline the selection of appropriate therapeutic
interventions but also eliminate the need for invasive
biopsy procedures, thereby reducing patient discom-
fort and associated risks [2-4].

Furthermore, the integration of radiomics into
clinical workflows holds the promise of transforming
cancer care through personalized treatment strate-
gies. By leveraging advanced machine learning algo-
rithms to analyze the rich dataset provided by radiomic
features, clinicians can gain unprecedented insights
into the molecular underpinnings of each patient’s tu-
mor. This approach enables the tailoring of treatment
plans to the individual’s genetic profile, maximizing
efficacy while minimizing unnecessary exposure to
potentially ineffective therapies [6-8].

Despite the considerable progress made in the
field of radiomics, its application in the context of
EGFR mutation detection in NSCLC remains an area of
active research. Challenges such as the standardiza-
tion of image acquisition protocols, feature extraction
methodologies, and the validation of predictive mod-
els across diverse patient populations are currently
being addressed. As these obstacles are overcome,
radiomics stands on the cusp of revolutionizing the
paradigm of cancer diagnosis and treatment, herald-
ing a new era of precision oncology that is guided by
the intricate interplay between imaging phenotypes
and genetic information.

This study introduces an innovative radiomics
framework to improve the non-invasive prediction of
EGFR mutation status in lung nodules by integrating
three newly developed texture-based features engi-
neered to quantify subtle textural and geometric sig-
natures associated with genetic mutations, combining
advanced mathematical models with state-of-the-art
image processing techniques. By capturing previously
underutilized patterns in computed tomography (CT)
data, this approach seeks to enhance diagnostic pre-
cision, enabling clinicians to tailor targeted therapies
and optimize patient outcomes through personalized
oncological care.

Objective: to enhance the accuracy of EGFR mu-
tation status prediction in lung nodules by introducing
and integrating novel texture-based radiomics fea-
tures into conventional radiomics analysis.

Material and methods / MaTepuan n metoabl

Three novel texture-driven radiomic features —
Adaptive Texture Contrast (ATC), Directional Texture
Uniformity (DTU), and Co-occurrence of Texture

Transitions (CTT) were designed to improve diag-
nostic precision in identifying EGFR mutations within
lung nodules. These features integrate mathematical
frameworks and cutting-edge image analysis tech-
niques to quantify subtle textural and geometric signa-
tures linked to genetic alterations. Figure 1 illustrates
the radiomic feature extraction pipeline, which en-
compasses the conceptual foundation, computational
workflows, and validation protocols for each feature.

The analysis leveraged a large-scale radiogenom-
ic dataset [9, 10] comprising 211 patient cases, in-
cluding high-resolution CT scans, clinical annotations
of tumor regions, and genomic profiling data. This da-
taset enabled the systematic evaluation of feature per-
formance in distinguishing EGFR mutation statuses
while ensuring robustness across diverse clinical sce-
narios.

Adaptive Texture Contrast (ATC)

The concept of ATC is developed from the em-
pirical observation that pathological tissues exhibit
distinctive texture patterns, which vary significantly in
contrast across different scales. These patterns are
crucial for distinguishing between normal and patho-
logical tissue states and are particularly effective in
identifying key genetic mutations, such as those as-
sociated with the EGFR.

The ATC computation is a detailed three-part pro-
cess.

Fourier Transform

It is the first step in the ATC process involves
transforming the region of interest (ROI) from the spa-

Fig. 1. Extracting features of radiomics

Puc. 1. 3BneyeHne pagnoMmUYecKMX NPU3HAKOB
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tial domain to the frequency domain using the Fourier
Transform. This transformation is crucial as it allows us

to analyze the frequency components of the image, fa-
cilitating the subsequent identification and isolation of
dominant frequencies that are significant for textural

analysis in the ROI).

Dominant Frequency Identification and Isolation

Following the transformation, the next step in-
volves identifying and isolating dominant frequencies.
This is achieved using a thresholding technique on the
magnitude spectrum of the transformed data. A band-
pass filter is applied to retain only those frequencies
within a specific range set by a predefined threshold,
effectively isolating the textures that are most relevant
to the analysis.

Contrast Calculation

It is the final stage of the ATC workflow involves
quantifying contrast levels within the isolated texture
patterns. This is achieved through standardized met-
rics such as Michelson’s contrast formula [11], ex-
pressed as:

L.~ L.,

Zmax ~ “min 1
L +L i

where, C denotes the contrast value, while L, and
L,;, represent the maximum and minimum luminance
values, respectively, within the ROI.

These luminance values are derived from the in-
tensity levels highlighted by the band-pass filter, fo-
cusing on the texture patterns correlated with the

dominant frequencies.

Directional Texture Uniformity (DTU)

DTU is engineered to evaluate the consistency
of texture patterns across multiple orientations with-
in a ROI. This metric is particularly vital for analyzing
lung nodules, where pathological tissues often exhibit
anisotropic (directionally dependent) textures — a hall-
mark of malignancy and genetic alterations like EGFR
mutations. The degree of uniformity or spatial hetero-
geneity in these textures serves as a critical biomark-
er for distinguishing between benign and malignant
transformations.

The DTU feature extraction process can be bro-
ken down into two main steps.

Applying Directional Filters

To effectively highlight specific texture orien-
tations within the ROI, Gabor filters are employed,
known for their efficacy in texture analysis. Gabor fil-
ters are particularly adept at isolating frequency con-
tentin precise orientations, making them ideal for dis-
tinguishing subtle textural differences in pathological

tissues. The response of a Gabor filter applied to an
image is mathematically defined as:

72 272 ’
G(x’y;)"aea“laca"{) = exp[—x;—#]cos(2n%+\y} (2)
9

where,

x'=xcos0+ ysin0;

' =—xsin0+ ycos0;

0: Orientation angle of the filter’s normal vector
relative to the direction of parallel stripes, enabling
directional sensitivity;

o: Standard deviation of the Gaussian envelope
(o), dictating the spatial localization of the filter’s re-
sponse;

A: Wavelength of the sinusoidal component, gov-
erning the periodicity of texture patterns captured;

y: Phase displacement, controlling the sinusoidal
wave’s alignment within the filter;

v: Spatial aspect ratio, specifying the ellipticity of
the filter’s support region to accommodate anisotro-
pic textures.

For this study, Gabor filters were configured to
target specific frequencies and orientations based
on preliminary analysis of lung CT images, which sug-
gested enhanced detection of anomalous textures as-
sociated with EGFR mutations. The filter parameters
were optimized through a series of experiments to
maximize the detection accuracy of early-stage mu-
tations.

Calculating the Uniformity

After filtering, uniformity of the emphasized tex-
tures is assessed, serving as a key indicator of tissue
normalcy or pathology.

Entropy measures the randomness in the distri-
bution of filtered image values, computed as:

__zp

where, H is the entropy, p(i) is the probability of inten-
sity level i in the filtered image.

High entropy values suggest significant texture
variation, often correlating with pathological changes.
Similarly, the dispersion of intensity values (variance)
is analyzed to determine how widely texture intensi-
ties are spread about the mean, which assists in dis-
tinguishing pathological from normal textures. The
specific methods and thresholds used for calculating
these metrics are tailored to the unique characteristics
of the lung nodule textures observed in the datasets.
Variance provides a measure of how widely texture in-
tensities are spread about the mean, further assisting
in distinguishing pathological from normal textures.

)log, p(i (3)
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Co-occurrence of Texture Transitions (CTT)

The feature represents an innovative texture-cen-
tric metric engineered to refine the precision of EGFR
mutation status prediction in lung nodules. By system-
atically quantifying the spatial interplay among distinct
textural configurations, CTT prioritizes transitions be-
tween these patterns within a defined ROI. Building on
the framework of the gray-level co-occurrence matrix
(GLCM) [12], CTT shifts analytical focus from basic
pixel intensity variations to intricate textural pattern in-
teractions, delivering a detailed perspective on tumor
heterogeneity and architectural complexity.

CTT is designed to capture the evolution of tex-
ture within medical images, analyzing how differ-
ent texture patterns interact spatially. This approach
moves beyond the traditional GLCM, which primarily
assesses gray-level spatial dependencies, to explore
texture transitions that are indicative of underlying tis-
sue architecture changes, such as those associated
with pathological conditions like EGFR mutations.

The computation of CTT involves several key
steps, each contributing to the extraction of this ad-
vanced feature.

Texture Pattern Identification

The process begins by distinguishing different
texture patterns within the ROI. The process begins
by distinguishing different texture patterns within the
ROI. This categorization is achieved through unsuper-
vised learning techniques that utilize rotation-invariant
texture descriptors like Local Binary Patterns (LBP),
which systematically group voxels with analogous tex-
tural properties.

The LBP operator is defined for each pixel by
comparing it with its neighbors, computed as:

Ts(i,—i)2r (4)

p=0

LBP(x.y.)=

where i. is the intensity of the central pixel, i,are the
intensities of P surrounding pixels in a circular neigh-

borhood, and s is the sign function:

1 >0
s(x)z{ * (5)

0 otherwise

Techniques such as K-means are applied to the
LBP values to systematically identify distinct texture
patterns across the ROI.

Texture Transition Matrix (TTM) Generation

After identifying unique texture patterns, a Texture
Transition Matrix (TTM) is constructed. This matrix is
analogous to GLCM but focuses specifically on texture
transitions rather than gray-level changes.

Statistical Analysis of TTM

Each element TTM(i,j) in the matrix quantifies the
frequency of transitions between texture pattern ii and
texture pattern j, considering a specified distance and
direction, thus highlighting the spatial interplay of tex-
tures.

The final analytical phase involves calculating sta-
tistical measures on the TTM to derive meaningful fea-
tures that reflect the texture transitions. The key sta-
tistics computed include:

— Contrast: Measures the intensity contrast be-
tween a pixel and its neighbor over the whole image:

Contrast=2ij(i—j)2TTM(i,j) (6)

— Correlation: Evaluates how correlated a pixel is
to its neighbor over the entire image:

) VTTM (i,
Correlation:zi’j(’ Hz)(J “1) (’ J) 7)

6,0,

— Energy: Sum of squared elements in the TTM,
indicating texture uniformity:

Energy= TTM(i,j)’ (8)

where, ,, w, are the means and ¢, 6, the standard de-
viations of the row and column sums of the TTM, re-
spectively. These statistics are crucial for understand-
ing the spatial distribution and intensity variations of
textures, providing insights that are directly relevant
to diagnosing pathological changes associated with
EGFR mutations.

Results / Pe3ynbTaTbl

The classification of pulmonary nodules into
EGFR-mutant and wild-type subtypes was performed
through quantitative analysis of standard radiomics
biomarkers extracted from CT imaging. These bio-
markers include morphometric parameters (e.g., spic-
ulation index, lobulation degree), attenuation char-
acteristics (e.g., histogram skewness, kurtosis), and
spatial heterogeneity measures derived from second-
order texture analysis, providing a multidimension-
al representation of nodule phenotype for molecular
subtype discrimination.

For the study, the dataset was randomly divided
into training and validation sets with an 70% training
and 30% validation split. This resulted in 319 train-
ing samples and 173 validation samples for the EGFR
mutant category. To achieve a more balanced data-
set, the Wild-Type category was adjusted to include
578 training samples and 248 validation samples. Sev-
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eral classification models were then trained and vali-
dated using this arrangement, achieving a baseline
performance that serves as a reference for subse-
quent comparisons (Table 1). Table 2 highlights the
reduction in false negatives and false positives, along
with increases in true positives and true negatives for
the EGFR mutant and wild-type categories.

The proposed features were meticulously de-
signed to capture intricate texture patterns and vari-
ations within the lung nodules, potentially indicative
of underlying genetic mutations. Upon incorporating
these novel features into the existing set of radiomics
features, a significant enhancement in classification
performance was observed. Specifically, the addition
of ATC, DTU, and CTT led to an average increase of
about 4% in the accuracy of predicting the EGFR mu-
tation status. This enhancement demonstrates the
critical importance of advanced texture characteriza-
tion in decoding tumor biology at the molecular scale,
particularly for identifying genetic alterations that in-
fluence therapeutic response.

Discussion / O6¢cyxaeHue

To objectively evaluate feature significance, the
Minimum Redundancy Maximum Relevance (MRMR)
algorithm [13] was implemented. This computationally
efficient method identifies optimal feature subsets by

maximizing statistical dependence on mutation status
while minimizing inter-feature correlations, ensuring
selection of maximally informative yet non-redundant
biomarkers. Remarkably, the MRMR analysis, the re-
sults of which is provided in Table 3, revealed that ATC,
DTU, and CTT emerged as the top-ranked features,
indicating their paramount significance in the classi-
fication model. The MRMR results and classification
performance metrics collectively validate the diag-
nostic value of these novel features, demonstrating
their unique capacity to encode critical pathophysi-
ological information directly relevant to EGFR muta-
tion mechanismes.

The experimental results demonstrate that the
proposed methodology achieves superior predictive
performance compared to contemporary approach-
es in EGFR mutation detection. While recent investi-
gations utilizing advanced deep architectures report
notable accuracy benchmarks — Mut-SeResNet [14]
attaining 88.3% accuracy through hybrid texture-mor-
phological analysis and CT-based deep radiomics
models [15] reaching 88% classification accuracy —
our approach yields a 4% improvement in diagnostic
precision (92% accuracy) (Table 4). This enhanced
performance stems from the synergistic integration of:

— adaptive texture contrast quantification targeting
mutation-specific spatial patterns;

Table 1
Comparison of classification methods’ accuracy and precision before and after adding novel texture-based features, %
Tabnuua 1
CpaBHeH1e aKKypaTHOCTU M TOYHOCTU METOAO0B KaaccudUKaLMmM A0 U nocsie L06aBNEHUS HOBbIX TEKCTYPHBIX MPU3HAKOB, %
Accuracy / AKKypaTHOCTb Precision / TouHoCTb
Method / MeTop,
Before / o After / Mocne Before / o After / Mocne
Support Vector Machine (SVM) / MeTon onopHbIx BEKTOPOB 85 89 87 91
Random Forest (RF) / CnyyaiiHbi nec 88 92 90 93
Neural Network (NN) / HelipoHHas ceTb 86 90 88 92
Gradient Boosting (GB) / TpaaneHTHbI 6yCTUHT 87 91 89 94
Table 2

Comparison of confusion matrix parameters before and after adding novel texture-based features for Random Forest

Tabnuya 2

CpaBHEHMe napameTpoB MaTpuLbl HETOYHOCTel A0 M nocne Jo6aBNeHUs HOBbIX TEKCTYPHbIX NPU3HAKOB ANqa MeToaa «Cl'ly‘laﬁHblﬁ nec»

Category / KaTeropus

Predicted EGFR mutant /
MpenckasaHHas myTtaums EGFR

Predicted EGFR wild-type /
lMpenckazanHblii EGFR ankoro tvna

Before / o After / Mocne Before / o After / NMocne
Actual EGFR mutant / MpeackasaHHas myTaums EGFR TP=155 TP=161 FN=33 FN=18
Actual EGFR wild-type / MNpenckasaHHbiit EGFR avkoro tmna FP=18 FP=12 TN=215 TN=230

Note. EGFR - epidermal growth factor receptor; TP - true positives; TN - true negatives; FP - false positives; FN - false negatives.

lMpumeyarue. EGFR (epidermal growth factor receptor) - peuenTop anuaepmManbHoro daktopa pocra; TP (true positives) — UCTUHHO-NONOXUTENbHbIE pe-
3ynbtatel; TN (true negatives) — UCTMHHO-OTpULATeNbHble pe3ynbtathl; FP (false positives) — noxHononoxutensHble pesynetatsl; FN (false negatives) -

NOXHOOTPULLATENbHbIE PE3YNbTaTbl.
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Table 3 Table 4
Minimum Redundancy Maximum Relevance analysis results Comparison with other studies
Tabnuya 3 Tabnuya 4
PesynbTaTbl aHanM3a KXMMHMMYM U36bITOYMHOCTU, MAKCUMYM CpaBHeHMe € ApYrMMMU UCCIeA0BaHUAMU
peneBaHTHOCTU» M -
utation o
Importance score / Research / type / Tun Accuracy, % /o
Feature / Mpu3Hak MccnepoBanue AKKypaTHOCTb, %
OLI,EHKa Ba>XHOCTU MyTaunu
e | e |
DTU 0.79 A
Mut-SeResNet [14] EGFR 88
Contrast / KoHtpacrt 0.77
Prediction
Eccentricity / SkcueHTpucutet 0.76 model [15] / Mogenb EGFR 87
Entropy / SHTponus 0.75 MporHosupoBaHms [15]
[an) 0.74 . . "
- The accuracy differential underscores the criti-
Homogeneity / OaxopoaHocTb 0.72 cal advantage of specialized feature engineering over
Energy / SHeprus 0.71 conventional deep learning pipelines in decoding sub-
. . tle phenotypic manifestations of genetic alterations.
Uniformity / EanHoobpasune 0.70 . . . . .
: y/En P These findings validate the clinical potential of dedi-
Correlation / Koppensuus 0.69 cated texture analysis frameworks while highlighting
Sphericity / ChepuiHoCTb 0.68 the necessity for continued innovation in radiomic bio-
marker development.
Volume / OGenm 067 This study has leveraged explainable artificial in-
Surface area / lnowagb NoBepXHOCTH 0.65 telligence techniques to elucidate the mechanisms
Compactness / KoMnakTHOCTb 0.64 behind machine learning models used in classifying
" </ 063 EGFR mutant from wild-type lung nodules which is
urtosis / Jkcuecc i shown in Figure 2. Insights from these methods have

Note. ATC - Adaptive Texture Contrast; DTU - Directional Texture
Uniformity; CTT - Co-occurrence of Texture Transitions.

lMpumeyanue. ATC (Adaptive Texture Contrast) — aganTWBHbIA KOHTPACT
Tekctypbl; DTU (Directional Texture Uniformity) - HanpaBneHHas oa-
HopogHocTb TekcTypbl; CTT (Co-occurrence of Texture Transitions) -
COBMeCTHas BCTPEYaeMOCTb Nepexo/i0B TEKCTYpbl.

— directional uniformity analysis capturing geno-
typic anisotropy;

— dynamic texture transition modeling through co-
occurrence relationships.

revealed that the current models predominantly focus
on the edges of nodules to make their classifications.
This observation suggests that the edges of nodules
carry significant discriminatory features that are cru-
cial for accurate differentiation.

Building on this finding, future research should
concentrate on developing and refining features that
specifically enhance the visibility and analytical empha-
sis on the edges of lung nodules. Such efforts could
involve engineering new image processing algorithms
or adapting existing ones that more effectively capture

Fig. 2. Explainable artificial intelligence analysis of Residual Neural Network (ResNet) for classifying EGFR mutant and wild-type
lung nodules

Puc. 2. O6bACHMMBIN aHanU3 OCTaTOYHOM HEMPOHHOM ceTu (ResNet) C NOMOLLBIO MCKYCCTBEHHOTO MHTENNEKTa ANs Knaccubukaumm

MYTaHTHbIX U OMKUX TUMOB NEeroyHbix y3enkos EGFR
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edge-related features, which may include sharpness,
texture gradients, or specific morphological markers.

Moreover, incorporating these edge-focused fea-
tures into machine learning models could potentially
improve the sensitivity and specificity of diagnostic
tools, thereby facilitating earlier and more accurate
detection of EGFR mutations. This line of research
will not only push the boundaries of what is current-
ly achievable with medical imaging analysis but also
contribute to the personalized medicine approach by
providing more tailored diagnostic insights based on
subtle imaging cues.

Conclusion / 3aknio4yeHune

This study embarked on the quest to enhance the
diagnostic precision of CT-based lung nodule classifi-
cation by incorporating novel texture-based radiomics
features, specifically aimed at distinguishing between
EGFR mutant and wild-type statuses. The convention-
al radiomics feature set, while comprehensive, was
augmented with three innovative texture descriptors:
ATC, DTU, and CTT. These features were meticulously
designed to capture subtle yet discriminative texture
patterns within the nodules, potentially indicative of
underlying genetic mutations.

The integration of ATC, DTU, and CTT into the ra-
diomics framework resulted in a notable improvement
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